Solveeit Logo

Question

Question: Tollens’s reagent is used for the detection of aldehyde when a solution of \(\text{ AgN}{{\text{O}}_...

Tollens’s reagent is used for the detection of aldehyde when a solution of  AgNO3 \text{ AgN}{{\text{O}}_{\text{3}}}\text{ } added to glucose with  NH4OH \text{ N}{{\text{H}}_{\text{4}}}\text{OH } the gluconic acid is formed
 Ag+ + e  Ag ; Ered0=0.8 V  C6H12O6 + H2 C6H12O7(Gluconic acid) + 2H+ + 2e ; Eredo = 0.05 V  Ag(NH3)2 + e  Ag(s) + 2NH3  \begin{aligned} & \text{ A}{{\text{g}}^{\text{+}}}\text{ + }{{\text{e}}^{-}}\text{ }\to \text{ Ag ; E}_{\text{red}}^{\text{0}}=0.8\text{ V } \\\ & {{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{6}}}\text{ + }{{\text{H}}_{\text{2}}}\text{O }\to \text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{7}}}\text{(Gluconic acid) + 2}{{\text{H}}^{\text{+}}}\text{ + 2}{{\text{e}}^{-}}\text{ ; E}_{\text{red}}^{\text{o}}\text{ = }-\text{0}\text{.05 V } \\\ & \text{Ag(N}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{2}}}\text{ + }{{\text{e}}^{-}}\text{ }\to \text{ Ag(s) + 2N}{{\text{H}}_{\text{3}}}\text{ } \\\ \end{aligned}
(Use  2.302 !!×!! RTF = 0.0592 \text{ 2}\text{.302 }\\!\\!\times\\!\\!\text{ }\dfrac{\text{RT}}{\text{F}}\text{ = 0}\text{.0592 } and  FRT=38.92 \text{ }\dfrac{\text{F}}{\text{RT}}\text{=38}\text{.92 } at  298 K \text{ 298 K } )
 2Ag+ + C6H12O6 + H2 2Ag(s) + C6H12O7 + 2H+ \text{ 2A}{{\text{g}}^{\text{+}}}\text{ + }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{6}}}\text{ + }{{\text{H}}_{\text{2}}}\text{O }\to \text{ 2Ag(s) + }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{7}}}\text{ + 2}{{\text{H}}^{\text{+}}}\text{ }
Find ln K \text{ ln K } of this reaction?

Explanation

Solution

For a reversible reaction shown by the general reaction,
 aA + bB  cC + dD \text{ aA + bB }\rightleftharpoons \text{ cC + dD }
The Nernst equation is written in terms of the equilibrium constant is written below,
 EcellRTnFln[C]c[D]d[A]a[B]b \text{ }{{\text{E}}_{\text{cell}}}\text{= }\dfrac{\text{RT}}{\text{nF}}\text{ln}\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}}\text{ }
Where  K = [C]c[D]d[A]a[B]b \text{ K = }\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}}\text{ } and K is an equilibrium constant for a reaction, R is gas constant, T is absolute temperature, n is the number of electrons in redox reaction and F is faraday's constant.

Complete step by step solution:
The nearest equation can be written in terms of equilibrium constant .It is given as follows,
 Ecell0 = RTnFln K \text{ E}_{\text{cell}}^{\text{0}}\text{ = }\dfrac{\text{RT}}{\text{nF}}\text{ln K } (1)
Where  Ecell0 \text{ E}_{\text{cell}}^{\text{0}}\text{ } is a cell constant, R is gas constant, T is absolute temperature, n is the number of electrons involved in a redox reaction, F is faraday's constant and k is the equilibrium constant of the reaction.
We have given that silver from silver nitrate undergoes a reduction reaction. The reduction potential for the reaction is,
 Ag+ + e  Ag Ered0=0.8 V \text{ A}{{\text{g}}^{\text{+}}}\text{ + }{{\text{e}}^{-}}\text{ }\to \text{ Ag E}_{\text{red}}^{\text{0}}=0.8\text{ V }
Similarly, glucose (aldehyde) forms gluconic acid. the reduction potential for the oxidation reaction of glucose to gluconic acid is as shown below,
 C6H12O6 + H2 C6H12O7(Gluconic acid) + 2H+ + 2e ; Eredo = 0.05 V \text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{6}}}\text{ + }{{\text{H}}_{\text{2}}}\text{O }\to \text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{7}}}\text{(Gluconic acid) + 2}{{\text{H}}^{\text{+}}}\text{ + 2}{{\text{e}}^{-}}\text{ ; E}_{\text{red}}^{\text{o}}\text{ = }-\text{0}\text{.05 V }
Thus cell potential  ECell0 \text{ E}_{\text{Cell}}^{\text{0}}\text{ } is the difference in reduction potential of reduction reaction and oxidation reaction. Thus standard electrode potential is determined as,
 ECell0 = (Ered0)Red+(Ered0)Ox = 0.8 0.05 = 0.75 V \text{ E}_{\text{Cell}}^{\text{0}}\text{ }=\text{ }{{\left( \text{E}_{\text{red}}^{\text{0}} \right)}_{\text{Red}}}+{{\left( \text{E}_{\text{red}}^{\text{0}} \right)}_{\text{Ox}}}\text{ = 0}\text{.8 }-0.05\text{ = 0}\text{.75 V }
Therefore electrode standard potential is equal to  0.75 V \text{ 0}\text{.75 V } .
Substitute values in the equation (1) we have,
 0.75 = RTnFln K = 2.302 RTnFlog K \text{ 0}\text{.75 = }\dfrac{\text{RT}}{\text{nF}}\text{ln K = 2}\text{.302 }\dfrac{\text{RT}}{\text{nF}}\text{log K } (2)
We are requested to use  2.302 !!×!! RTF = 0.0592 \text{ 2}\text{.302 }\\!\\!\times\\!\\!\text{ }\dfrac{\text{RT}}{\text{F}}\text{ = 0}\text{.0592 } and  FRT=38.92 \text{ }\dfrac{\text{F}}{\text{RT}}\text{=38}\text{.92 } . Let's substitute all value given in the equation (2) we get the following relation,
 0.75 = RT2×F ln K = 12×0.05922.303ln K \text{ 0}\text{.75 = }\dfrac{\text{RT}}{\text{2}\times \text{F}}\text{ ln K = }\dfrac{1}{2}\times \dfrac{0.0592}{2.303}\ln \text{ K }
Rearrange above equation with respect to the natural logarithmic value of equilibrium constant K is given as,
 ln K = (0.75)(2×2.303)0.0592 = 58.38 \text{ ln K = }\dfrac{\left( 0.75 \right)\left( 2\times 2.303 \right)}{0.0592}\text{ = 58}\text{.38 }
Thus the correct answer of the ln K value is  58.38 \text{ 58}\text{.38 } .

Hence, (B) is the correct option.

Note: Note that, for electrochemical reaction value of equilibrium constant K is very large.it indicates that electrochemical reactions are more favoured towards the product. Remember that the negative value of  Ecell \text{ }{{\text{E}}_{\text{cell}}}\text{ } means that the cell under study is not feasible or not possible. Thus the value of  Ecell \text{ }{{\text{E}}_{\text{cell}}}\text{ }is used to determine whether the cell is spontaneous or not.