Solveeit Logo

Question

Question: To what temperature must a neon gas sample be heated to double the pressure, if the initial volume o...

To what temperature must a neon gas sample be heated to double the pressure, if the initial volume of a gas at 750C{75^0}{\text{C}} is decreased by 15%15\% ?
A.319 oC^{\text{o}}{\text{C}}
B.592 oC^{\text{o}}{\text{C}}
C.128 oC^{\text{o}}{\text{C}}
D.60 oC^{\text{o}}{\text{C}}
E.90 oC^{\text{o}}{\text{C}}

Explanation

Solution

To solve this question, we require knowledge of the combined gas law which is a result of the combination of Charles' Law and Boyle's Law.
Formula used: P1V1T1 = P2V2T2\dfrac{{{{\text{P}}_{\text{1}}}{{\text{V}}_{\text{1}}}}}{{{{\text{T}}_{\text{1}}}}}{\text{ = }}\dfrac{{{{\text{P}}_{\text{2}}}{{\text{V}}_{\text{2}}}}}{{{{\text{T}}_{\text{2}}}}}
Where, V1{{\text{V}}_1} is the initial volume of the gas, P1 and T1{{\text{P}}_1}{\text{ and }}{{\text{T}}_1} are the initial pressure and temperature, V2 , P2 and T2{{\text{V}}_2}{\text{ , }}{{\text{P}}_2}{\text{ and }}{{\text{T}}_2} are the final volume, pressure and temperature respectively.

Complete step by step answer:
Let the initial volume, V1{{\text{V}}_1} of the gas be V.
Initial pressure, P1{{\text{P}}_1} be P and the initial temperature,
T1{{\text{T}}_1}= 750C{75^0}{\text{C}}=273+75=348K273 + 75 = 348{\text{K}}
Therefore the final volume, according to the question,
V2{{\text{V}}_{\text{2}}}=V15100V = 1720V{\text{V}} - \dfrac{{15}}{{100}}{\text{V = }}\dfrac{{17}}{{20}}{\text{V}}
And pressure P2{{\text{P}}_2} = 2P
Therefore putting the values of the parameters in the combined gas equation, we get,
P1V1T1 = P2V2T2\dfrac{{{{\text{P}}_{\text{1}}}{{\text{V}}_{\text{1}}}}}{{{{\text{T}}_{\text{1}}}}}{\text{ = }}\dfrac{{{{\text{P}}_{\text{2}}}{{\text{V}}_{\text{2}}}}}{{{{\text{T}}_{\text{2}}}}}
PV348 = 2P×17V20T\Rightarrow \dfrac{{{\text{PV}}}}{{348}}{\text{ = }}\dfrac{{{\text{2P}} \times {\text{17V}}}}{{{\text{20T}}}}
Rearranging this, we get:
T2=348×2×1720\Rightarrow {{\text{T}}_2} = \dfrac{{348 \times 2 \times 17}}{{20}}
T2=591.6K\Rightarrow {{\text{T}}_2} = 591.6{\text{K}}
Hence, the temperature of the gas after expansion is equal to 591.6K592K591.6{\text{K}} \sim 592{\text{K}}
591.6273\Rightarrow 591.6-273
3190C\Rightarrow 319^0C

Hence, the correct option is option A.

Note:
Charles’ Law states that, “When the pressure of a fixed mass of a dry gas is kept constant, then the change in the volume is directly proportional to the temperature of the gas in the Kelvin scale.”
Mathematically,
VTV1T1 = V2T2{\text{V}} \propto {\text{T}} \Rightarrow \dfrac{{{{\text{V}}_{\text{1}}}}}{{{{\text{T}}_{\text{1}}}}}{\text{ = }}\dfrac{{{{\text{V}}_{\text{2}}}}}{{{{\text{T}}_{\text{2}}}}}
Boyle’s Law states that, “Under constant temperature, the pressure of a dry gas is inversely proportional to the volume of the gas”.
Mathematically,
P1VP1V1 = P2V2{\text{P}} \propto \dfrac{{\text{1}}}{{\text{V}}} \Rightarrow {{\text{P}}_{\text{1}}}{{\text{V}}_{\text{1}}}{\text{ = }}{{\text{P}}_{\text{2}}}{{\text{V}}_{\text{2}}}
Combining both these laws, we get the combined gas law as stated above,
P1V1T1 = P2V2T2\dfrac{{{{\text{P}}_{\text{1}}}{{\text{V}}_{\text{1}}}}}{{{{\text{T}}_{\text{1}}}}}{\text{ = }}\dfrac{{{{\text{P}}_{\text{2}}}{{\text{V}}_{\text{2}}}}}{{{{\text{T}}_{\text{2}}}}}