Solveeit Logo

Question

Question: To remove the second term of the equation \({x^4} - 10{x^3} + 35{x^2} - 50x + 24 = 0\), diminish the...

To remove the second term of the equation x410x3+35x250x+24=0{x^4} - 10{x^3} + 35{x^2} - 50x + 24 = 0, diminish the roots by
A) 25\dfrac{2}{5}
B) 25 - \dfrac{2}{5}
C) 52\dfrac{5}{2}
D) 52 - \dfrac{5}{2}

Explanation

Solution

Firstly, put x=y+hx = y + h, in the given equation.
Then, expand each term and get an equation in the form of ay4+by3+cy2+dy+e=0a{y^4} + b{y^3} + c{y^2} + dy + e = 0.
Now, to remove the second term, the coefficient of second term, i.e. b=0b = 0.
Thus, get the required answer.

Complete step by step solution:
The equation given here is x410x3+35x250x+24=0{x^4} - 10{x^3} + 35{x^2} - 50x + 24 = 0 .
Now, replacing x=y+hx = y + h , we get
(y+h)410(y+h)3+35(y+h)250(y+h)+24=0{\left( {y + h} \right)^4} - 10{\left( {y + h} \right)^3} + 35{\left( {y + h} \right)^2} - 50\left( {y + h} \right) + 24 = 0
Now, solving the above equation as follows
(y2+h2+2yh)210(y3+h3+3yh2+3y2h)+35(y2+h2+2yh)50y50h+24=0{\left( {{y^2} + {h^2} + 2yh} \right)^2} - 10\left( {{y^3} + {h^3} + 3y{h^2} + 3{y^2}h} \right) + 35\left( {{y^2} + {h^2} + 2yh} \right) - 50y - 50h + 24 = 0
(y2)2+(h2)2+(2yh)2+2(y2)(h2)+2(h2)(2yh)+2(2yh)(y2)10y310h330yh2 30y2h+35y2+35h2+70yh50y50h+24=0  \therefore {\left( {{y^2}} \right)^2} + {\left( {{h^2}} \right)^2} + {\left( {2yh} \right)^2} + 2\left( {{y^2}} \right)\left( {{h^2}} \right) + 2\left( {{h^2}} \right)\left( {2yh} \right) + 2\left( {2yh} \right)\left( {{y^2}} \right) - 10{y^3} - 10{h^3} - 30y{h^2} - \\\ 30{y^2}h + 35{y^2} + 35{h^2} + 70yh - 50y - 50h + 24 = 0 \\\
y4+h4+4y2h2+2y2h2+4yh3+4y3h10y310h330yh230y2h+35y2+35h2+ 70yh50y50h+24=0  \therefore {y^4} + {h^4} + 4{y^2}{h^2} + 2{y^2}{h^2} + 4y{h^3} + 4{y^3}h - 10{y^3} - 10{h^3} - 30y{h^2} - 30{y^2}h + 35{y^2} + 35{h^2} + \\\ 70yh - 50y - 50h + 24 = 0 \\\
Now, writing the terms in the form of ay4+by3+cy2+dy+e=0a{y^4} + b{y^3} + c{y^2} + dy + e = 0
y4+y3(4h10)+y2(4h2+2h230h+35)+y(4h330h2+70h50)+(h410h3+35h250h+24)=0\therefore {y^4} + {y^3}\left( {4h - 10} \right) + {y^2}\left( {4{h^2} + 2{h^2} - 30h + 35} \right) + y\left( {4{h^3} - 30{h^2} + 70h - 50} \right) + \left( {{h^4} - 10{h^3} + 35{h^2} - 50h + 24} \right) = 0 As it is said that, the second term of the equation, must be removed.
So, to remove the second term of the equation, the coefficient of the second term must be 0.
4h10=0 4h=10 h=104 h=52  \therefore 4h - 10 = 0 \\\ \therefore 4h = 10 \\\ \therefore h = \dfrac{{10}}{4} \\\ \therefore h = \dfrac{5}{2} \\\
Thus, we get the value of h as h=52h = \dfrac{5}{2} .
Now, the reduced equation can be written as

y4+y3(4(52)10)+y2(4(52)2+2(52)230(52)+35)+y(4(52)330(52)2+70(52)50)+ ((52)410(52)3+35(52)250(52)+24)=0  \therefore {y^4} + {y^3}\left( {4\left( {\dfrac{5}{2}} \right) - 10} \right) + {y^2}\left( {4{{\left( {\dfrac{5}{2}} \right)}^2} + 2{{\left( {\dfrac{5}{2}} \right)}^2} - 30\left( {\dfrac{5}{2}} \right) + 35} \right) + y\left( {4{{\left( {\dfrac{5}{2}} \right)}^3} - 30{{\left( {\dfrac{5}{2}} \right)}^2} + 70\left( {\dfrac{5}{2}} \right) - 50} \right) + \\\ \left( {{{\left( {\dfrac{5}{2}} \right)}^4} - 10{{\left( {\dfrac{5}{2}} \right)}^3} + 35{{\left( {\dfrac{5}{2}} \right)}^2} - 50\left( {\dfrac{5}{2}} \right) + 24} \right) = 0 \\\

Thus, the reduced equation is y452y2211=0{y^4} - \dfrac{5}{2}{y^2} - 211 = 0.
We can also write the above equation as x452x2211=0{x^4} - \dfrac{5}{2}{x^2} - 211 = 0
Thus, to remove the second term, we have to diminish the roots by 52\dfrac{5}{2} .

So, option (C) is correct.

Note:
Here, the expansion of the terms must be calculated carefully using appropriate formulae.
The formulae used in the expansion in the question are:
(a+b)2=a2+b2+2ab (a+b)3=a3+b3+3ab2+3a2b (a+b)4=[(a+b)2]2=(a2+b2+2ab)2  {\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab \\\ {\left( {a + b} \right)^3} = {a^3} + {b^3} + 3a{b^2} + 3{a^2}b \\\ {\left( {a + b} \right)^4} = {\left[ {{{\left( {a + b} \right)}^2}} \right]^2} = {\left( {{a^2} + {b^2} + 2ab} \right)^2} \\\