Solveeit Logo

Question

Physics Question on Moving charges and magnetism

To know the resistance GG of a galvanometer by half deflection method, a battery of emf VEV_E and resistance RR is used to deflect the galvanometer by angle θ\theta. If a shunt of resistance SS is needed to get half deflection then G,RG, R and SS are related by the equation :

A

2S(R+G)=RG2S (R+G)=RG

B

S(R+G)=RGS (R+G)=RG

C

2S=G2S=G

D

2G=S2G=S

Answer

S(R+G)=RGS (R+G)=RG

Explanation

Solution

Ig=VR+GI_{g}=\frac{V}{R+G} Rc=R+GSG+sR_{c}=R+\frac{GS}{G+s} I=VR+GSG+SI=\frac{V}{R+\frac{GS}{G+S}} IgG=(IIg)SI '_{g}G=\left(I-I '_{g}\right)S Ig(G+S)=ISI '_{g}\left(G+S\right)=IS Ig2=ISG+S\frac{I_{g}}{2}=\frac{IS}{G+S} V2(R+G)=VR+GSG+S×SG+S\frac{V}{2\left(R+G\right)}=\frac{V}{R+\frac{GS}{G+S}}\times\frac{S}{G+S} 12(R+G)=SR(G+S)+GS\frac{1}{2\left(R+G\right)}=\frac{S}{R\left(G+S\right)+GS} R(G+S)+GS=2S(R+G)R\left(G+S\right)+GS=2S\left(R+G\right) RG+RS+GS=2S(R+G)RG+RS+GS=2S\left(R+G\right) RG=2S(R+G)S(R+G)RG=2S\left(R+G\right)-S\left(R+G\right) RG=S(R+G)RG=S\left(R+G\right)