Solveeit Logo

Question

Physics Question on Errors in Measurement

To find the spring constant (k) of a spring experimentally, a student commits 2% positive error in the measurement of time and 1% negative error in measurement of mass. The percentage error in determining value of k is :

A

0.03

B

0.01

C

0.04

D

0.05

Answer

0.05

Explanation

Solution

The time period TT of a spring is given by:

T=2πmk.T = 2\pi \sqrt{\frac{m}{k}}.

Squaring both sides:

T2mk.T^2 \propto \frac{m}{k}.

Taking percentage errors:

ΔT2T2=ΔmmΔkk.\frac{\Delta T^2}{T^2} = \frac{\Delta m}{m} - \frac{\Delta k}{k}.

Substituting the relationship ΔT2T2=2ΔTT\frac{\Delta T^2}{T^2} = 2 \frac{\Delta T}{T}, we get:

2ΔTT=ΔmmΔkk.2 \frac{\Delta T}{T} = \frac{\Delta m}{m} - \frac{\Delta k}{k}.

Rewriting for Δkk\frac{\Delta k}{k}:

Δkk=Δmm2ΔTT.\frac{\Delta k}{k} = \frac{\Delta m}{m} - 2 \frac{\Delta T}{T}.

Given:
ΔTT=2%\frac{\Delta T}{T} = 2\% (positive error),
Δmm=1%\frac{\Delta m}{m} = -1\% (negative error).

Substitute the values:

Δkk=(1%)2(2%)=1%4%=5%.\frac{\Delta k}{k} = (-1\%) - 2(2\%) = -1\% - 4\% = -5\%.

Hence, the magnitude of the percentage error in kk is:

Δkk=5%.\left| \frac{\Delta k}{k} \right| = 5\%.

Final Answer: 5%5\% (Option 4)