Solveeit Logo

Question

Question: To expand \((1 + 2x)^{- 1/2}\) as an infinite series, the range of *x* should be...

To expand (1+2x)1/2(1 + 2x)^{- 1/2} as an infinite series, the range of x should be

A

[12,12]\left\lbrack - \frac{1}{2},\frac{1}{2} \right\rbrack

B

(12,12)\left( - \frac{1}{2},\frac{1}{2} \right)

C

[2,2]\lbrack - 2,2\rbrack

D

(– 2, 2)

Answer

(12,12)\left( - \frac{1}{2},\frac{1}{2} \right)

Explanation

Solution

(1+2x)1/2(1 + 2x)^{- 1/2} can be expanded if 2x<1|2x| < 1 i.e., if x<12|x| < \frac{1}{2} i.e.,

if 12<x<12- \frac{1}{2} < x < \frac{1}{2} i.e., if x(12,12)x \in \left( - \frac{1}{2},\frac{1}{2} \right).