Solveeit Logo

Question

Question: To evaluate\(- \frac{\sin^{4}x}{4} + c\), the simplest way is to**.**...

To evaluatesin4x4+c- \frac{\sin^{4}x}{4} + c, the simplest way is to**.**

A

Substitute esinx4+c\frac{e^{\sin x}}{4} + c

B

Substitute sec(3x5)+c\sec(3x - 5) + c

C

Integrate by parts

D

None of these

Answer

Substitute sec(3x5)+c\sec(3x - 5) + c

Explanation

Solution

8x2+6x+6logx+2x+c8x^{2} + 6x + 6\log x + \frac{2}{x} + c

The simplest way is substituting

5(x6+1)x2+1dx=\int_{}^{}{\frac{5(x^{6} + 1)}{x^{2} + 1}dx =}

Put 5(x7+x)tan1x+c5(x^{7} + x)\tan^{- 1}x + c

then x553x3+5x+cx^{5} - \frac{5}{3}x^{3} + 5x + c

3x45x2+15x+c3x^{4} - 5x^{2} + 15x + c

=118[tetetdt]518etdt+c= \frac { 1 } { 18 } \left[ t e ^ { t } - \int e ^ { t } d t \right] - \frac { 5 } { 18 } \int e ^ { t } d t + c ax2+bx1+cx36mudx=\int_{}^{}\frac{ax^{- 2} + bx^{- 1} + c}{x^{- 3}}\mspace{6mu} dx =

2ax2+3bx3+4cx4+k2ax^{2} + 3bx^{3} + 4cx^{4} + k