Solveeit Logo

Question

Question: To each element of the set \[S = \left\\{ {1,{\text{ }}2,{\text{ }} \ldots .,{\text{ }}1000} \right\...

To each element of the set S = \left\\{ {1,{\text{ }}2,{\text{ }} \ldots .,{\text{ }}1000} \right\\} a colour is assigned. Suppose that for any two elements a, b of S, if 1515 divides (a+b)\left( {a + b} \right) then they are both assigned the same colour. What is the maximum possible number of distinct colours used?

Explanation

Solution

As given in the question, the sum of a and b when divided by 1515 will assign the same colour, so all the multiples of 1515 will have the same colour. Also, see that it will form the ordered pair which keeps on repeating and forms a sequence.

Complete step-by-step answer:
According to the question, if a and b are both assigned the same colour, (a+b)\left( {a + b} \right) is divisible by 1515.
Therefore, we need to make combinations of a and b such that (a+b)=15\left( {a + b} \right) = 15 . This can be achieved as shown below:
1+14=15, 2+13=15, 3+12=15, 4+11=15, 5+10=15, 6+9=15, 7+8=151 + 14 = 15,{\text{ }}2 + 13 = 15,{\text{ }}3 + 12 = 15,{\text{ }}4 + 11 = 15,{\text{ }}5 + 10 = 15,{\text{ }}6 + 9 = 15,{\text{ }}7 + 8 = 15
So, we infer from the above combinations that all of them give us (a+b)=15\left( {a + b} \right) = 15 .
Therefore, these numbers contribute to 77 distinct colours. Also, number 1515 will have a different colour.
Now, in order to generalise the above combinations for all the numbers we take (a+b)=15n\left( {a + b} \right) = 15n , and it can be achieved as shown below-
1+14: (1+15n , 14+15n)1 + 14:{\text{ }}\left( {1 + 15n{\text{ , }}14 + 15n} \right)
2+13: (2+15n , 13+15n)2 + 13:{\text{ }}\left( {2 + 15n{\text{ , }}13 + 15n} \right)
3+12: (3+15n , 12+15n)3 + 12:{\text{ }}\left( {3 + 15n{\text{ , }}12 + 15n} \right)
4+11: (4+15n , 11+15n)4 + 11:{\text{ }}\left( {4 + 15n{\text{ , }}11 + 15n} \right)
5+10: (5+15n , 10+15n)5 + 10:{\text{ }}\left( {5 + 15n{\text{ , }}10 + 15n} \right)
6+9: (6+15n , 9+15n)6 + 9:{\text{ }}\left( {6 + 15n{\text{ , }}9 + 15n} \right)
7+8: (7+15n , 8+15n)7 + 8:{\text{ }}\left( {7 + 15n{\text{ , }}8 + 15n} \right)
15+30: (15n+15n)15 + 30:{\text{ }}\left( {15n + 15n} \right)
Thus, \left( {a,{\text{ }}b} \right) = \left\\{ {\left( {1,{\text{ }}14} \right),\left( {2,{\text{ }}13} \right),....,\left( {7,{\text{ }}8} \right),(15,30)} \right\\} can have maximum 88 possible distinct colours as seen.

Hence, the maximum possible numbers of distinct colours used is 88.

Note: Write down all the combinations on paper so that you do not skip any pair. The number of elements in S does not matter for problems of this type as long as it exceeds the number that must divide (a+b)\left( {a + b} \right) .