Solveeit Logo

Question

Question: To determine the Young's modulus of a wire, the formula is \(Y = \frac{F}{A}.\frac{L}{\Delta l};\) w...

To determine the Young's modulus of a wire, the formula is Y=FA.LΔl;Y = \frac{F}{A}.\frac{L}{\Delta l}; where L= length, A= area of cross- section of the wire, ΔL=\Delta L =Change in length of the wire when stretched with a force F. The conversion factor to change it from CGS to MKS system is

A

1

B

10

C

0.1

D

0.01

Answer

0.1

Explanation

Solution

We know that the dimension of young's modulus is [ML1T2]\lbrack ML^{- 1}T^{- 2}\rbrack

C.G.S. unit : gm cm1sec2cm^{- 1}\sec^{- 2}{} and M.K.S. unit : kg. m–1 sec–2

By using the conversion formula:

n2=n1[M1M2]1[L1L2]1[T1T2]2=[gmkg]1[cmmeter]1[secsec2]n_{2} = n_{1}\left\lbrack \frac{M_{1}}{M_{2}} \right\rbrack^{1}\left\lbrack \frac{L_{1}}{L_{2}} \right\rbrack^{- 1}\left\lbrack \frac{T_{1}}{T_{2}} \right\rbrack^{- 2} = \left\lbrack \frac{gm}{kg} \right\rbrack^{1}\left\lbrack \frac{cm}{meter} \right\rbrack^{- 1}\left\lbrack \frac{\sec}{\sec}^{- 2} \right\rbrack

\thereforeConversion factor n2n1=[gm103gm]1[cm102cm]1[secsec2]\frac{n_{2}}{n_{1}} = \left\lbrack \frac{gm}{10^{3}gm} \right\rbrack^{1}\left\lbrack \frac{cm}{10^{2}cm} \right\rbrack^{- 1}\left\lbrack \frac{\sec}{\sec}^{- 2} \right\rbrack

=110=0.1= \frac{1}{10} = 0.1