Solveeit Logo

Question

Physics Question on mechanical properties of fluid

To determine the composition of a bimetallic alloy, a sample is first weighed in air and then in water. These weights are found to be w1w_1 and w2w_2 respectively. If the densities of the two constituent metals are ρ1\rho_1 and ρ2\rho_2 respectively, then the weight of the first metal in the sample is (where ρw\rho_w is the density of water)

A

ρ1ρw(ρ2ρ1)[w1(ρ2ρw)w2ρ2]\frac{\rho_{1}}{\rho_{w}\left(\rho_{2}-\rho_{1}\right)}\left[w_{1}\left(\rho_{2}-\rho_{w}\right)-w_{2}\rho_{2}\right]

B

ρ1ρw(ρ2+ρ1)[w1(ρ2ρw)+w2ρ2]\frac{\rho_{1}}{\rho_{w}\left(\rho_{2}+\rho_{1}\right)}\left[w_{1}\left(\rho_{2}-\rho_{w}\right)+w_{2}\rho_{2}\right]

C

ρ1ρw(ρ2ρ1)[w1(ρ2+ρw)w2ρ1]\frac{\rho_{1}}{\rho_{w}\left(\rho_{2}-\rho_{1}\right)}\left[w_{1}\left(\rho_{2}+\rho_{w}\right)-w_{2}\rho_{1}\right]

D

ρ1ρw(ρ2ρ1)[w1(ρ1+ρw)w2ρ1]\frac{\rho_{1}}{\rho_{w}\left(\rho_{2}-\rho_{1}\right)}\left[w_{1}\left(\rho_{1}+\rho_{w}\right)-w_{2}\rho_{1}\right]

Answer

ρ1ρw(ρ2ρ1)[w1(ρ2ρw)w2ρ2]\frac{\rho_{1}}{\rho_{w}\left(\rho_{2}-\rho_{1}\right)}\left[w_{1}\left(\rho_{2}-\rho_{w}\right)-w_{2}\rho_{2}\right]

Explanation

Solution

By Archimedes' Principle
F=vρwgF=v \rho_{w} g
(w1w2)g=vρwg\Rightarrow\left(w_{1}-w_{2}\right) g=v \rho_{w} g
Let, the total volume be vv and first metal weight be xx
w1w2=(v1+v2)ρww_{1}-w_{2}=\left(v_{1}+v_{2}\right) \rho_{w}
w1w2=v1ρw+v2ρw(v=mρ)w_{1}-w_{2}=v_{1} \rho_{w}+v_{2} \rho_{w} \,\,\,\left(\because v=\frac{m}{\rho}\right)
w1w2=(xρ1ρw+w1xρ2ρw)w_{1}-w_{2}=\left(\frac{x}{\rho_{1}} \rho_{w}+\frac{w_{1}-x}{\rho_{2}} \rho_{w}\right)
w1w2=xρ2ρw+(w1x)ρwρ1ρ1ρ2w_{1}-w_{2}=\frac{x \rho_{2} \rho_{w}+\left(w_{1}-x\right) \rho_{w} \rho_{1}}{\rho_{1} \rho_{2}}
w1ρ1ρ2w2ρ1ρ2=xρ2ρw+w1ρwρ1xρwρ1w_{1}\, \rho_{1} \,\rho_{2}-w_{2} \,\rho_{1}\, \rho_{2}=x \rho_{2} \,\rho_{w}+w_{1} \,\rho_{w} \rho_{1}-x \rho_{w}\, \rho_{1}
x(ρ2ρ1)ρw=ρ1[w1(ρ2ρw)w2ρ2]x\left(\rho_{2}-\rho_{1}\right) \rho_{w}=\rho_{1}\left[w_{1}\left(\rho_{2}-\rho_{w}\right)-w_{2}\, \rho_{2}\right]
x=ρ1ρw(ρ2ρ1)[w1(ρ2ρw)w2ρ2]x=\frac{\rho_{1}}{\rho_{w}\left(\rho_{2}-\rho_{1}\right)}\left[w_{1}\left(\rho_{2}-\rho_{w}\right)-w_{2} \,\rho_{2}\right]