Question
Mathematics Question on Properties of Inverse Trigonometric Functions
To derive the tangent formula, the following steps are given: 1. tan(A+B)=sinAsinBcosAcosB+cosAcosBsinAsinBcosAcosBsinAcosB+cosAcosBcosAsinB 2. tan(A+B)=cos(A+B)sin(A+B) 3. tan(A+B)=cosAcosB−sinAsinBsinAcosB+cosAsinB 4.tan(A+B)=1−tanAtanBtanA+tanB Their correct and proper sequential form to derive the formula is:
A
2, 4, 3, 1
B
1, 2, 3, 4
C
1, 4, 2, 3
D
2, 3, 1, 4
Answer
2, 3, 1, 4
Explanation
Solution
Tangent formula is derived as follows tan(A+B)=cos(A+B)sin(A+B) =cosAcosB−sinAsinBsinAcosB+cosAsinB =cosAcosBcosAcosB−cosAcosBsinAsinBcosAcosBsinAcosB+cosAcosBcosAsinB=1−tanAtanBtanA+tanB Correct and proper sequential form to derive the formula is 2, 3, 1, 4.