Solveeit Logo

Question

Question: To calculate the oxidation number of the underlined atoms in the compounds given below; \((a)\,{H...

To calculate the oxidation number of the underlined atoms in the compounds given below;
(a)H2SO4(b)HNO3(c)H3PO3(d)K2C2O4(e)H2S4O6(f)Cr2O72(g)NaH2PO4 SNPC2S4Cr2P (a)\,{H_2}S{O_4}\,\,\,\left( b \right)HN{O_3}\,\,\,\left( c \right)\,{H_3}P{O_3}\,\,\,\left( d \right){K_2}{C_2}{O_4}\,\,\,\left( e \right){H_2}{S_4}{O_6}\,\,\,\left( f \right)C{r_2}{O_7}^{2 - }\,\,\,\left( g \right)Na{H_2}P{O_4} \\\ \,\,\,\,\,\,\,\,\,S\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,N\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,P\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{C_2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{S_4}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,C{r_2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,P \\\

Explanation

Solution

The oxidation number can be described as the number that is allocated to the elements in a chemical combination. The oxidation number is therefore a count of electrons that the atoms in a molecule can share, lose or gain while forming chemical bonds with the other atoms of the other elements.

Complete step by step answer:
(a) Now as we all know that the charge on any neutral compound is always equal to zero therefore
Therefore the charge on (a)H2SO4(a)\,{H_2}S{O_4} is 0
2(Oxidation number of H) + 1(oxidation number of S) + 4(oxidation number of O) = 02\left( {Oxidation{\text{ }}number{\text{ }}of{\text{ }}H} \right){\text{ }} + {\text{ }}1\left( {oxidation{\text{ }}number{\text{ }}of{\text{ }}S} \right){\text{ }} + {\text{ }}4\left( {oxidation{\text{ }}number{\text{ }}of{\text{ }}O} \right){\text{ }} = {\text{ }}0
=2+Oxidationnumber  ofS8=0= \,2 + \,Oxidation\,number\;of\,S\, - \,8\, = \,0

Oxidation number of S = +6 + 6

(b) Here HNO3HN{O_3} is A neutral compound so similarly its charge is 0
let N be equal to x

\left( {Oxidation{\text{ }}number{\text{ }}of{\text{ }}{{\text{H}}_{}}} \right){\text{ }} + {\text{ }}\left( {oxidation{\text{ }}number{\text{ }}of{\text{ }}{{\text{N}}_{}}} \right){\text{ }} + {\text{ 3}}\left( {oxidation{\text{ }}number{\text{ }}of{\text{ }}{O_{}}} \right)$$$$\, = \,0
+1+x6=0 x=5 + 1\, + \,x\, - \,6\, = \,0 \\\ x\, = \,5 \\\
therefore the oxidation state of N is 55

(c) Here in H3PO3{H_3}P{O_3}\, we similarly calculate
let us assume the oxidation number of P as x in this case:

3(Oxidation number of H) + (oxidation number of P) + 3(oxidation number of O)3\left( {Oxidation{\text{ }}number{\text{ }}of{\text{ }}{{\text{H}}_{}}} \right){\text{ }} + {\text{ }}\left( {oxidation{\text{ }}number{\text{ }}of{\text{ }}{{\text{P}}_{}}} \right){\text{ }} + {\text{ 3}}\left( {oxidation{\text{ }}number{\text{ }}of{\text{ }}{O_{}}} \right) =0 = \,0
1(3)+x2(4)=0 3+x8=0 x=5 1(3)\, + \,x\,\, - 2\left( 4 \right)\, = \,0 \\\ 3\, + \,x\, - \,8\, = \,0 \\\ x\, = \,5 \\\
Hence the Oxidation number of P in this particular question is 5

(d) Here in K2C2O4{K_2}{C_2}{O_4} we have to calculate the oxidation number of C2{C_2}
So similarly let us assume the oxidation number of C2{C_2} to be x

2(Oxidation number of K) + 2(oxidation number of C) + 4(oxidation number of O) = 02\left( {Oxidation{\text{ }}number{\text{ }}of{\text{ }}{{\text{K}}_{}}} \right){\text{ }} + {\text{ 2}}\left( {oxidation{\text{ }}number{\text{ }}of{\text{ }}{{\text{C}}_{}}} \right){\text{ }} + {\text{ }}4\left( {oxidation{\text{ }}number{\text{ }}of{\text{ }}{O_{}}} \right){\text{ }} = {\text{ }}0
1(3)\, + \,x\,\, - 2\left( 4 \right)\, = \,0 \\\ 3\, + \,x\, - \,8\, = \,0 \\\ x\, = \,5 \\\ 2\, + \,x\, - 8\, = \,0 \\\ = \, + 3 \\\

Therefore the oxidation number of C2{C_2} is 3

(e) Here in the case of H2S4O6{H_2}{S_4}{O_6}\,this is a neutral compound and hence the net charge on it is = 0
and let us similarly assume the oxidation number of S4\,{S_4}\,to be x
now

2(Oxidation number of H) + 4(oxidation number of S) + 6(oxidation number of O) = 02\left( {Oxidation{\text{ }}number{\text{ }}of{\text{ }}{{\text{H}}_{}}} \right){\text{ }} + {\text{ 4}}\left( {oxidation{\text{ }}number{\text{ }}of{\text{ }}{{\text{S}}_{}}} \right){\text{ }} + {\text{ 6}}\left( {oxidation{\text{ }}number{\text{ }}of{\text{ }}{O_{}}} \right){\text{ }} = {\text{ }}0
2+4x12=0 x=2.5 2\, + \,4x\, - \,12\, = \,0 \\\ x\, = \,2.5 \\\
Thus the oxidation number of S in this case is 2.5

(f) Here in this case we have Cr2O72C{r_2}{O_7}^{2 - }
2(Oxidation number of Cr)2\left( {Oxidation{\text{ }}number{\text{ }}of{\text{ C}}{{\text{r}}_{}}} \right) ++ 7(oxidation number of O) = - 2{\text{7}}\left( {oxidation{\text{ }}number{\text{ }}of{\text{ }}{O_{}}} \right){\text{ }} = {\text{ - 2}}
Here the compound has a net charge of -2. Therefore, let us assume the oxidation state of Cr to be x:
2x\, - \,14\, = \, - 2 \\\ 2x\, = \,12 \\\ x\, = \,6 \\\

Hence, the oxidation number of 1 chromium ion here is 6

(g) Here in this case we have NaH2PO4Na{H_2}P{O_4} and it is a neutral compound therefore the net charge is equal to zero.
Let us assume the oxidation state of P to be x, therefore:

(Oxidation number of Na) + 2(oxidation number of H) + 4(oxidation number of O) + 1(OxidationnumberofP) \left( {Oxidation{\text{ }}number{\text{ }}of{\text{ N}}{{\text{a}}_{}}} \right){\text{ }} + {\text{ 2}}\left( {oxidation{\text{ }}number{\text{ }}of{\text{ }}{{\text{H}}_{}}} \right){\text{ }} + {\text{ 4}}\left( {oxidation{\text{ }}number{\text{ }}of{\text{ }}{O_{}}} \right)\,{\text{ + }}\,1\left( {Oxidation\,number\,of\,P} \right){\text{ }}
3\, + \,x\, - 8\, = \,0 \\\ x\, = \, + 5 \\\

Thus the oxidation number of P here is 5

Note: The NaClNaCl crystal lattice has a coordination number of 6 and the ionic compounds falling in in the range of coordination number 6 have a radius ratio between 0.414 – 0.732 pm. In order to solve these questions simply and in less time one should mug up the coordination numbers of various crystal lattices and then simply determine their CN from the category they are falling into.