Solveeit Logo

Question

Question: To a one litre solution of 0.1 N HCl, 0.025 mol of \({\text{N}}{{\text{H}}_{\text{4}}}{\text{Cl}}\) ...

To a one litre solution of 0.1 N HCl, 0.025 mol of NH4Cl{\text{N}}{{\text{H}}_{\text{4}}}{\text{Cl}} is added. Assuming 80% dissociation of the solutes, the freezing point of the solution is: (Kf{{\text{K}}_{\text{f}}} = 1.85 deg/molal)
A. 0.33C - {0.33^ \circ }{\text{C}}
B. 0.85C - {0.85^ \circ }{\text{C}}
C. 0.23C - {0.23^ \circ }{\text{C}}
D. 0.416C - {0.416^ \circ }{\text{C}}

Explanation

Solution

The freezing point of a solution is the temperature at which there is an equilibrium between the liquid and solid phase, we usually observe depression in the freezing point due to the addition of solute particles, NH4Cl{\text{N}}{{\text{H}}_{\text{4}}}{\text{Cl}} is the solute for this question.

Complete Step by step answer:
Let’s calculate the vent off factor for the 80% dissociation of solutes,
We know, i = 1 + (n – 1)α{{\alpha }}
Here, α=80100{{\alpha = }}\dfrac{{80}}{{100}}
\Rightarrow α=0.8{{\alpha = 0}}{\text{.8}}
i = 1 + (21)0.8\therefore {\text{i = 1 + (2}} - 1{\text{)0}}{\text{.8}} (n = 2, due to the dissociation of NH4ClNH3+HCl{\text{N}}{{\text{H}}_{\text{4}}}{\text{Cl}} \to {\text{N}}{{\text{H}}_3} + {\text{HCl}} )
\Rightarrow i = 1 + (1)0.8{\text{i = 1 + (1)0}}{\text{.8}}
\Rightarrowi = 1.8
Now, we are given 1 litre of 0.1 N HCl solvent, we can calculate the mass of
Normality = M (molarity) ×\times valence factor
\RightarrowM = Normaityvalence factor \dfrac{{{\text{Normaity}}}}{{{\text{valence factor }}}}
\RightarrowM = 0.1 (valence factor of HCl is 1)
Now we have to calculate the mass of HCl
\RightarrowM(Molarity) = Given massmolar mass \dfrac{{{\text{Given mass}}}}{{{\text{molar mass }}}} (since we have 1 litre of the solution we have ignored the value 1 in the denominator)
\RightarrowGiven mass = molar mass ×\times Molarity
\RightarrowGiven mass = 36.46 ×\times 0.1
\RightarrowGiven mass = 3.646
Now, we can calculate the value of molality as we are given the 0.025 mol of NH4Cl{\text{N}}{{\text{H}}_{\text{4}}}{\text{Cl}} solute
m= 0.0253.646 \Rightarrow {\text{m}} = {\text{ }}\dfrac{{{\text{0}}{\text{.025}}}}{{3.646}}{\text{ }}
\Rightarrow m = 0.00685
Substituting all the values in the formula for ΔT{{\Delta T}} we get;
\Rightarrow ΔTf = iKfm{{\Delta }}{{\text{T}}_{\text{f}}}{\text{ = i}}{{\text{K}}_{\text{f}}}{\text{m}}
\Rightarrow ΔTf{{\Delta }}{{\text{T}}_{\text{f}}} =  1.8×1.85×0.00685{\text{ 1}}{\text{.8}} \times {\text{1}}{\text{.85}} \times 0.00685
\Rightarrow ΔTf{{\Delta }}{{\text{T}}_{\text{f}}} = 0.2281 (we will write only to the second decimal by rounding off the obtained value)
\Rightarrow ΔTf{{\Delta }}{{\text{T}}_{\text{f}}} = 0.23C^ \circ {\text{C}}
this value is of difference in freezing temperature, to get the freezing point of the solution we have to subtract the obtained value by 0C{0^ \circ }{\text{C}}(freezing point of water)
\Rightarrow ΔTf{{\Delta }}{{\text{T}}_{\text{f}}}= TfTf{\text{T}}_{\text{f}}^ \circ - {{\text{T}}_{\text{f}}}
\Rightarrow Tf{{\text{T}}_{\text{f}}} = Tf{\text{T}}_{\text{f}}^ \circ - ΔT{{\Delta T}}
\Rightarrow Tf{{\text{T}}_{\text{f}}} = 0C{0^ \circ }{\text{C}} - 0.23C^ \circ {\text{C}}
\Rightarrow Tf{{\text{T}}_{\text{f}}} = - 0.23C^ \circ {\text{C}}

Hence, the correct answer is option (C) i.e., - 0.23C^ \circ {\text{C}}

Note: Many times we stop our calculation after obtaining the value of ΔTf{{\Delta }}{{\text{T}}_{\text{f}}} by assuming it to be the final answer, but it is not the final answer unless the question asks to calculate the difference in freezing point i.e, the value of ΔTf{{\Delta }}{{\text{T}}_{\text{f}}}. And if the question asks for the value of freezing point after the adding of solute (i.e., the value of Tf{{\text{T}}_{\text{f}}}) like in our question we have to calculate one more step by using the other formula of ΔTf{{\Delta }}{{\text{T}}_{\text{f}}}= TfTf{\text{T}}_{\text{f}}^ \circ - {{\text{T}}_{\text{f}}}