Solveeit Logo

Question

Question: The vectors are $\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}, \vec{b} = \hat{i} + \hat{j}$ if $\vec{c}$ ...

The vectors are a=2i^+j^2k^,b=i^+j^\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}, \vec{b} = \hat{i} + \hat{j} if c\vec{c} is a vector such that ac=c\vec{a} \cdot \vec{c} = |\vec{c}| and ca=22|\vec{c} - \vec{a}| = 2\sqrt{2}. Angle between a×b\vec{a} \times \vec{b} and c\vec{c} is π4\frac{\pi}{4} then (a×b)×c|(\vec{a} \times \vec{b}) \times \vec{c}| is

A

3

B

32\frac{3}{\sqrt{2}}

C

323\sqrt{2}

D

1

Answer

32\frac{3}{\sqrt{2}}

Explanation

Solution

To find (a×b)×c|(\vec{a} \times \vec{b}) \times \vec{c}|, we need to calculate the magnitudes of a×b\vec{a} \times \vec{b} and c\vec{c}, and the sine of the angle between them.

Step 1: Calculate a×b\vec{a} \times \vec{b} and its magnitude. Given a=2i^+j^2k^\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k} and b=i^+j^\vec{b} = \hat{i} + \hat{j}. The cross product a×b\vec{a} \times \vec{b} is:

a×b=i^j^k^212110\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -2 \\ 1 & 1 & 0 \end{vmatrix} =i^((1)(0)(2)(1))j^((2)(0)(2)(1))+k^((2)(1)(1)(1))= \hat{i}((1)(0) - (-2)(1)) - \hat{j}((2)(0) - (-2)(1)) + \hat{k}((2)(1) - (1)(1)) =i^(0+2)j^(0+2)+k^(21)= \hat{i}(0 + 2) - \hat{j}(0 + 2) + \hat{k}(2 - 1) =2i^2j^+k^= 2\hat{i} - 2\hat{j} + \hat{k}

Let d=a×b\vec{d} = \vec{a} \times \vec{b}. The magnitude of d\vec{d} is:

d=2i^2j^+k^=22+(2)2+12=4+4+1=9=3|\vec{d}| = |2\hat{i} - 2\hat{j} + \hat{k}| = \sqrt{2^2 + (-2)^2 + 1^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3

Step 2: Find the magnitude of c\vec{c} using the given conditions. We are given two conditions for c\vec{c}:

  1. ac=c\vec{a} \cdot \vec{c} = |\vec{c}|
  2. ca=22|\vec{c} - \vec{a}| = 2\sqrt{2}

First, let's find the magnitude of a\vec{a}:

a=2i^+j^2k^=22+12+(2)2=4+1+4=9=3|\vec{a}| = |2\hat{i} + \hat{j} - 2\hat{k}| = \sqrt{2^2 + 1^2 + (-2)^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3

Now, square the second condition:

ca2=(22)2|\vec{c} - \vec{a}|^2 = (2\sqrt{2})^2

Using the property x2=xx|\vec{x}|^2 = \vec{x} \cdot \vec{x}:

(ca)(ca)=8(\vec{c} - \vec{a}) \cdot (\vec{c} - \vec{a}) = 8 c22(ca)+a2=8|\vec{c}|^2 - 2(\vec{c} \cdot \vec{a}) + |\vec{a}|^2 = 8

Substitute the first condition (ca=c\vec{c} \cdot \vec{a} = |\vec{c}|) and the value of a=3|\vec{a}| = 3:

c22c+32=8|\vec{c}|^2 - 2|\vec{c}| + 3^2 = 8 c22c+9=8|\vec{c}|^2 - 2|\vec{c}| + 9 = 8

Rearrange the terms to form a quadratic equation in c|\vec{c}|:

c22c+1=0|\vec{c}|^2 - 2|\vec{c}| + 1 = 0

This is a perfect square trinomial:

(c1)2=0(|\vec{c}| - 1)^2 = 0

Therefore,

c=1|\vec{c}| = 1

Step 3: Calculate (a×b)×c|(\vec{a} \times \vec{b}) \times \vec{c}|. We need to find d×c|\vec{d} \times \vec{c}|. The magnitude of the cross product of two vectors is given by X×Y=XYsinθ|\vec{X} \times \vec{Y}| = |\vec{X}| |\vec{Y}| \sin \theta, where θ\theta is the angle between X\vec{X} and Y\vec{Y}. Here, X=d=a×b\vec{X} = \vec{d} = \vec{a} \times \vec{b} and Y=c\vec{Y} = \vec{c}. We found d=3|\vec{d}| = 3 and c=1|\vec{c}| = 1. The angle between a×b\vec{a} \times \vec{b} and c\vec{c} is given as π4\frac{\pi}{4}. So, θ=π4\theta = \frac{\pi}{4}.

(a×b)×c=dcsin(π4)|(\vec{a} \times \vec{b}) \times \vec{c}| = |\vec{d}| |\vec{c}| \sin\left(\frac{\pi}{4}\right) =(3)(1)(12)= (3)(1)\left(\frac{1}{\sqrt{2}}\right) =32= \frac{3}{\sqrt{2}}