Solveeit Logo

Question

Chemistry Question on Bohr’s Model for Hydrogen Atom

Time taken for an electron to complete one revolution in the Bohr orbit of hydrogen atom is

A

4π2mr2nh\frac{4 \pi^{2}mr^{2}}{n h}

B

nh4π2mr\frac{n h}{4 \pi ^{2}m r}

C

2πmrn2h2\frac{2 \pi m r}{n^{2} h^{2}}

D

nh4π2mr2\frac{n h}{4 \pi^{2} mr^{2}}

Answer

4π2mr2nh\frac{4 \pi^{2}mr^{2}}{n h}

Explanation

Solution

By Bohr postulate, mυr=nh2πorυ=nh2πmrm \upsilon r=n \frac{h}{2 \pi} \, or\, \upsilon=\frac{n h}{2 \pi m r} No. of revolutions per sec =VelocityCircumferenceoftheorbit=υ2πr=\frac{Velocity}{Circumference\, of\, the \,orbit}=\frac{\upsilon}{2 \pi r} Substituting value of υ,\upsilon, we get =nh2πmr×12πr=nh4π2mr2=\frac{n h}{2 \pi mr}\times\frac{1}{2 \pi r}=\frac{n h}{4 \pi^{2} m r^{2}} nh4π2mr2\frac{n h}{4 \pi^{2} m r^{2}} revolutions completed in 1s \therefore\, 1 revolution will take 1nh4π2mr2=4π2mr2nh\frac{1}{\frac{n h}{4 \pi^{2} m r^{2}}}=\frac{4 \pi^{2} m r ^{2}}{n h}