Solveeit Logo

Question

Question: Time period for a magnet is T. If it is divided in four equal parts along its axis and perpendicular...

Time period for a magnet is T. If it is divided in four equal parts along its axis and perpendicular to its axis as shown then time period for each part will be

A

4T4 T

B

C

D

TT

Answer

Explanation

Solution

When magnet of length l is cut into four equal parts. then l=l2;M=m2×l2=ml4=M4l ^ { \prime } = \frac { l } { 2 } ; \therefore M ^ { \prime } = \frac { m } { 2 } \times \frac { l } { 2 } = \frac { m l } { 4 } = \frac { M } { 4 }

New moment of inertia I=wl212=w4(12)212=116wl212I ^ { \prime } = \frac { \mathrm { w } l ^ { 2 } } { 12 } = \frac { \frac { \mathrm { w } } { 4 } \cdot \left( \frac { 1 } { 2 } \right) ^ { 2 } } { 12 } = \frac { 1 } { 16 } \cdot \frac { \mathrm { w } l ^ { 2 } } { 12 }

Here w is the mass of magnet.

I=116I\therefore I ^ { \prime } = \frac { 1 } { 16 } I; Time period of each part T=2πIMBHT ^ { \prime } = 2 \pi \sqrt { \frac { I ^ { \prime } } { M ^ { \prime } B _ { H } } }

=2πI/16(M/4)BH=2πI4MBH=T2= 2 \pi \sqrt { \frac { I / 16 } { ( M / 4 ) B _ { H } } } = 2 \pi \sqrt { \frac { I } { 4 M B _ { H } } } = \frac { T } { 2 }