Solveeit Logo

Question

Question: PT $\frac{Sin 7\theta - Sin 5\theta}{Cos 7\theta + Cos 5\theta}$ = Tan$\theta$...

PT Sin7θSin5θCos7θ+Cos5θ\frac{Sin 7\theta - Sin 5\theta}{Cos 7\theta + Cos 5\theta} = Tanθ\theta

Answer

Proven

Explanation

Solution

To prove the identity sin7θsin5θcos7θ+cos5θ=tanθ\frac{\sin 7\theta - \sin 5\theta}{\cos 7\theta + \cos 5\theta} = \tan \theta, we will use the sum-to-product trigonometric formulas.

The relevant formulas are:

  1. sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)
  2. cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)

Let's apply these to the Left Hand Side (LHS) of the given identity. For the numerator, sin7θsin5θ\sin 7\theta - \sin 5\theta: Here, A=7θA = 7\theta and B=5θB = 5\theta. A+B2=7θ+5θ2=12θ2=6θ\frac{A+B}{2} = \frac{7\theta + 5\theta}{2} = \frac{12\theta}{2} = 6\theta AB2=7θ5θ2=2θ2=θ\frac{A-B}{2} = \frac{7\theta - 5\theta}{2} = \frac{2\theta}{2} = \theta So, the numerator becomes:

sin7θsin5θ=2cos6θsinθ\sin 7\theta - \sin 5\theta = 2 \cos 6\theta \sin \theta

For the denominator, cos7θ+cos5θ\cos 7\theta + \cos 5\theta: Here, A=7θA = 7\theta and B=5θB = 5\theta. A+B2=7θ+5θ2=12θ2=6θ\frac{A+B}{2} = \frac{7\theta + 5\theta}{2} = \frac{12\theta}{2} = 6\theta AB2=7θ5θ2=2θ2=θ\frac{A-B}{2} = \frac{7\theta - 5\theta}{2} = \frac{2\theta}{2} = \theta So, the denominator becomes:

cos7θ+cos5θ=2cos6θcosθ\cos 7\theta + \cos 5\theta = 2 \cos 6\theta \cos \theta

Now, substitute these expressions back into the LHS:

LHS=2cos6θsinθ2cos6θcosθ\text{LHS} = \frac{2 \cos 6\theta \sin \theta}{2 \cos 6\theta \cos \theta}

Assuming cos6θ0\cos 6\theta \neq 0, we can cancel out the common terms (2cos6θ2 \cos 6\theta):

LHS=sinθcosθ\text{LHS} = \frac{\sin \theta}{\cos \theta}

We know that sinθcosθ=tanθ\frac{\sin \theta}{\cos \theta} = \tan \theta.

LHS=tanθ\text{LHS} = \tan \theta

This is equal to the Right Hand Side (RHS) of the given identity. Hence, the identity is proven.

Explanation of the solution: The identity is proven by applying sum-to-product formulas for sine and cosine to the numerator and denominator respectively. The common term 2cos6θ2 \cos 6\theta cancels out, simplifying the expression to sinθcosθ\frac{\sin \theta}{\cos \theta}, which is tanθ\tan \theta.