Solveeit Logo

Question

Question: Through the vertex of the parabola\[{{y}^{2}}=4x\]chords\[OP\]and\[OQ\]are drawn at right angles t...

Through the vertex of the parabolay2=4x{{y}^{2}}=4xchordsOPOPandOQOQare drawn at
right angles to one another. The locus of middle point ofPQPQis
(a) y2=x+8{{y}^{2}}=x+8
(b) y2=2x+8{{y}^{2}}=-2x+8
(c) y2=2x8{{y}^{2}}=2x-8
(d) y2=x8{{y}^{2}}=x-8

Explanation

Solution

Hint: To find the locus of the middle point of two points on the parabola, write the points in parametric form and then find the middle point of the points. Use the fact that the product of slope of any two perpendicular lines is1-1.

We have the parabolay2=4x{{y}^{2}}=4x. We want to find the locus of middle point of two
points on the parabola such that the chords joining two points of the parabola to its vertex are
perpendicular to each other.
We know that the vertex of parabola of the formy2=4ax{{y}^{2}}=4axis(0,0)\left( 0,0 \right).
Thus, we have(0,0)\left( 0,0 \right)as the vertex of the parabolay2=4x{{y}^{2}}=4x.

To find the locus of middle point ofPQPQ, let’s write the points in parametric form.
We know that any point of the parabolay2=4ax{{y}^{2}}=4ax is of the form(at2,2at)\left( a{{t}^{2}},2at \right).
Substitutinga=1a=1in the above equation, we have the two points on our parabola asP(t1)=(t12,2t1)P\left( {{t}_{1}} \right)=\left( t_{1}^{2},2{{t}_{1}} \right)andQ(t2)=(t22,2t2)Q\left( {{t}_{2}} \right)=\left( t_{2}^{2},2{{t}_{2}} \right).
We know that the equation of any line passing through origin is of the formy=mxy=mx.
Let’s assume that the equation of line joining origin andP(t1)=(t12,2t1)P\left( {{t}_{1}} \right)=\left( t_{1}^{2},2{{t}_{1}} \right)is of the formy=m1xy={{m}_{1}}x.
Substituting the pointP(t1)=(t12,2t1)P\left( {{t}_{1}} \right)=\left( t_{1}^{2},2{{t}_{1}} \right)in the equation of
line, we have2t1=m1t122{{t}_{1}}={{m}_{1}}t_{1}^{2}.
Thus, we havem1=2t1{{m}_{1}}=\dfrac{2}{{{t}_{1}}}. ...(1)...\left( 1 \right)
Let’s assume that the equation of line joining origin andQ(t2)=(t22,2t2)Q\left( {{t}_{2}} \right)=\left( t_{2}^{2},2{{t}_{2}} \right)is of the formy=m2xy={{m}_{2}}x.
Substituting the pointQ(t2)=(t22,2t2)Q\left( {{t}_{2}} \right)=\left( t_{2}^{2},2{{t}_{2}} \right)in the equation of
line, we have2t2=m2t222{{t}_{2}}={{m}_{2}}t_{2}^{2}.
Thus, we havem2=2t2{{m}_{2}}=\dfrac{2}{{{t}_{2}}}. ...(2)...\left( 2 \right)
We know that the two chords passing throughPPandQQare perpendicular, so the product of
their slope is1-1.
Using equation(1)\left( 1 \right)and(2)\left( 2 \right), we havem1m2=1{{m}_{1}}{{m}_{2}}=-1.

& \Rightarrow \dfrac{2}{{{t}_{1}}}\times \dfrac{2}{{{t}_{2}}}=-1 \\\ & \Rightarrow {{t}_{1}}{{t}_{2}}=-4 \\\ \end{aligned}$$ Thus, we can write$${{t}_{1}}$$as$${{t}_{1}}=\dfrac{-4}{{{t}_{2}}}$$. $$...\left( 3 \right)$$ We know that the middle point of two points of the form$$\left( {{x}_{1}},{{y}_{1}} \right)$$and$$\left( {{x}_{2}},{{y}_{2}} \right)$$is$$\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)$$. Substituting$${{x}_{1}}=t_{1}^{2},{{y}_{1}}=2{{t}_{1}},{{x}_{2}}=t_{2}^{2},{{y}_{2}}=2{{t}_{2}}$$in the above equation, we have$$\left( \dfrac{t_{1}^{2}+t_{2}^{2}}{2},\dfrac{2{{t}_{1}}+2{{t}_{2}}}{2} \right)$$as the mid point of the points$$P\left( {{t}_{1}} \right)$$and$$Q\left( {{t}_{2}} \right)$$. Let’s assume$$x=\dfrac{t_{1}^{2}+t_{2}^{2}}{2},y=\dfrac{2{{t}_{1}}+2{{t}_{2}}}{2}$$. Substituting equation$$\left( 3 \right)$$in the above equation, we have$$x=\dfrac{{{\left( \dfrac{- 4}{{{t}_{2}}} \right)}^{2}}+t_{2}^{2}}{2},y=\dfrac{2\left( \dfrac{-4}{{{t}_{2}}} \right)+2{{t}_{2}}}{2}$$. Solving the above equation, we get$$x=\dfrac{{{\left( \dfrac{-4}{{{t}_{2}}} \right)}^{2}}+t_{2}^{2}}{2}$$and$$y=\dfrac{-4}{{{t}_{2}}}+{{t}_{2}}$$. Squaring the second equation, we get$${{y}^{2}}={{\left( \dfrac{-4}{{{t}_{2}}} \right)}^{2}}+t_{2}^{2}- 8$$. $$\Rightarrow {{y}^{2}}+8={{\left( \dfrac{-4}{{{t}_{2}}} \right)}^{2}}+t_{2}^{2}$$ Substituting the above equation in$$x=\dfrac{{{\left( \dfrac{-4}{{{t}_{2}}} \right)}^{2}}+t_{2}^{2}}{2}$$, we get$$x=\dfrac{{{\left( \dfrac{-4}{{{t}_{2}}} \right)}^{2}}+t_{2}^{2}}{2}=\dfrac{{{y}^{2}}+8}{2}$$. $$\Rightarrow 2x={{y}^{2}}+8$$ Hence, the correct answer is$${{y}^{2}}=2x-8$$. Note: It’s necessary to use the fact that the two chords are perpendicular and hence, the product of their slope is$$-1$$.