Solveeit Logo

Question

Question: Through the point P(a, b) where ab\> 0, the straight line ![](https://cdn.pureessence.tech/canvas_29...

Through the point P(a, b) where ab> 0, the straight line = 1 is drawn so as to form with axes a triangle of area

S. If ab> 0 then least value of S is

A

ab

B

2ab

C

3ab

D

None

Answer

2ab

Explanation

Solution

Area of DOAB = S = 12\frac { 1 } { 2 } ab …….(i)

equation of AB is xa+yb\frac { \mathrm { x } } { \mathrm { a } } + \frac { \mathrm { y } } { \mathrm { b } } = 1

put (a, b)

αa+βb\frac { \alpha } { a } + \frac { \beta } { b } = 1

Ž αa+aβ2S=1\frac { \alpha } { a } + \frac { a \beta } { 2 S } = 1 [using (i)]

Ž a2b – 2aS + 2aS = 0

\ aĪR

Ž D ³ 0

4S2 – 8abS ³ 0

S ³ 2ab

Least value of S = 2ab