Solveeit Logo

Question

Question: Through a point P (h, k, l) a plane is drawn at right angles to OP to meet the coordinate axes in A,...

Through a point P (h, k, l) a plane is drawn at right angles to OP to meet the coordinate axes in A, B and C. If OP = p, Axy{A_{xy}} is the area of projection of triangle ABC on XY–plane, Ayz{A_{yz}} is area of projection of triangle ABC on YZ–plane, then
(a)Δ=p5hkl\left( a \right)\Delta = \left| {\dfrac{{{p^5}}}{{hkl}}} \right|
(b)Δ=p52hkl\left( b \right)\Delta = \left| {\dfrac{{{p^5}}}{{2hkl}}} \right|
(c)AxyAyz=lh\left( c \right)\dfrac{{{A_{xy}}}}{{{A_{yz}}}} = \left| {\dfrac{l}{h}} \right|
(d)AxyAyz=hl\left( d \right)\dfrac{{{A_{xy}}}}{{{A_{yz}}}} = \left| {\dfrac{h}{l}} \right|

Explanation

Solution

In this particular question use the concept of direction ratios to find the equation of plane which is normal to OP which is given as, ax + by + cz = d, where a, b and c are the direction ratios of line OP and d is the distance of OP, so use these concept to reach the solution of the question.

Complete step-by-step answer :

Given data:
A point P (h, k, l) a plane is drawn at right angles to OP to meet the coordinate axes in A, B and C.
It is also given that OP = p.
Where O is the origin (0, 0, 0)
So the distance of point P from the origin is given as,
OP=(h0)2+(k0)2(l0)2=h2+k2+l2\Rightarrow OP = \sqrt {{{\left( {h - 0} \right)}^2} + {{\left( {k - 0} \right)}^2}{{\left( {l - 0} \right)}^2}} = \sqrt {{h^2} + {k^2} + {l^2}}
p=h2+k2+l2\Rightarrow p = \sqrt {{h^2} + {k^2} + {l^2}}
p2=h2+k2+l2\Rightarrow {p^2} = {h^2} + {k^2} + {l^2}.................... (1)
Now the direction ratios of line OP is given as
(hp,kp,lp)\left( {\dfrac{h}{p},\dfrac{k}{p},\dfrac{l}{p}} \right)
Now since OP is normal to the plane so the equation of plane is given as,
hpx+kpy+lpz=p\Rightarrow \dfrac{h}{p}x + \dfrac{k}{p}y + \dfrac{l}{p}z = p
hx+ky+lz=p2\Rightarrow hx + ky + lz = {p^2}
Now as we know that the coordinates of triangle ABC lie on coordinates axis,
So for the coordinates of A substitute y = z = 0,
So the coordinate of A is (p2h,0,0)\left( {\dfrac{{{p^2}}}{h},0,0} \right)
Similarly coordinates of B and C are (0,p2k,0)\left( {0,\dfrac{{{p^2}}}{k},0} \right) and (0,0,p2l)\left( {0,0,\dfrac{{{p^2}}}{l}} \right) respectively.
Therefore, A = (p2h,0,0)\left( {\dfrac{{{p^2}}}{h},0,0} \right), B = (0,p2k,0)\left( {0,\dfrac{{{p^2}}}{k},0} \right), and C = (0,0,p2l)\left( {0,0,\dfrac{{{p^2}}}{l}} \right)
Now the area of triangle ABC is given as,
Δ=Axy2+Ayz2+Azx2\Rightarrow \Delta = \sqrt {A_{xy}^2 + A_{yz}^2 + A_{zx}^2}.................... (2)
Where, Axy{A_{xy}} is the area of projection of triangle ABC on XY–plane, Ayz{A_{yz}} is area of projection of triangle ABC on YZ–plane and Azx{A_{zx}} is the area of projection of triangle ABC on ZX–plane.
Now as we know that the area of the triangle in 2-D passing from the points (x1,y1),(x2,y2) and (x3,y3)\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right){\text{ and }}\left( {{x_3},{y_3}} \right) is half times the determinant of the vertices of the triangle so we have,
So the area of the triangle AOB is,
Where A = (p2h,0,0)\left( {\dfrac{{{p^2}}}{h},0,0} \right), B = (0,p2k,0)\left( {0,\dfrac{{{p^2}}}{k},0} \right), and O = (0, 0, 0)
\Rightarrow {A_{xy}} = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&1 \\\ {{x_2}}&{{y_2}}&1 \\\ {{x_3}}&{{y_3}}&1 \end{array}} \right| = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}} {\dfrac{{{p^2}}}{h}}&0&1 \\\ 0&{\dfrac{{{p^2}}}{k}}&1 \\\ 0&0&1 \end{array}} \right|
Now expand this determinant we have,

\Rightarrow {A_{xy}} = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}} {\dfrac{{{p^2}}}{h}}&0&1 \\\ 0&{\dfrac{{{p^2}}}{k}}&1 \\\ 0&0&1 \end{array}} \right| = \dfrac{1}{2}\left| {\dfrac{{{p^2}}}{h}\left( {\dfrac{{{P^2}}}{k} - 0} \right) - 0 + 1\left( {0 - 0} \right)} \right|
Axy=12p4hk\Rightarrow {A_{xy}} = \dfrac{1}{2}\left| {\dfrac{{{p^4}}}{{hk}}} \right|
Similarly, Ayz=12p4kl{A_{yz}} = \dfrac{1}{2}\left| {\dfrac{{{p^4}}}{{kl}}} \right| and Azx=12p4lh{A_{zx}} = \dfrac{1}{2}\left| {\dfrac{{{p^4}}}{{lh}}} \right|
Now from equation (2) we have,
Δ=122p4hk2+122p4kl2+122p4lh2\Rightarrow \Delta = \sqrt {\dfrac{1}{{{2^2}}}{{\left| {\dfrac{{{p^4}}}{{hk}}} \right|}^2} + \dfrac{1}{{{2^2}}}{{\left| {\dfrac{{{p^4}}}{{kl}}} \right|}^2} + \dfrac{1}{{{2^2}}}{{\left| {\dfrac{{{p^4}}}{{lh}}} \right|}^2}}
Δ=p421hk2+1kl2+1lh2\Rightarrow \Delta = \dfrac{{{p^4}}}{2}\sqrt {{{\left| {\dfrac{1}{{hk}}} \right|}^2} + {{\left| {\dfrac{1}{{kl}}} \right|}^2} + {{\left| {\dfrac{1}{{lh}}} \right|}^2}}
Δ=p42l2+h2+k2h2k2l2\Rightarrow \Delta = \dfrac{{{p^4}}}{2}\sqrt {\left| {\dfrac{{{l^2} + {h^2} + {k^2}}}{{{h^2}\,{k^2}{l^2}}}} \right|}
Δ=p42hkll2+h2+k2\Rightarrow \Delta = \dfrac{{{p^4}}}{{2hkl}}\sqrt {\left| {{l^2} + {h^2} + {k^2}} \right|}
Now from equation 1 we have,
Δ=p42hklp2\Rightarrow \Delta = \dfrac{{{p^4}}}{{2hkl}}\sqrt {\left| {{p^2}} \right|}
Δ=p52hkl\Rightarrow \Delta = \dfrac{{{p^5}}}{{2hkl}}
And the ratio of AxyAyz\dfrac{{{A_{xy}}}}{{{A_{yz}}}} is
AxyAyz=12p4hk12p4kl=lh\Rightarrow \dfrac{{{A_{xy}}}}{{{A_{yz}}}} = \dfrac{{\dfrac{1}{2}\left| {\dfrac{{{p^4}}}{{hk}}} \right|}}{{\dfrac{1}{2}\left| {\dfrac{{{p^4}}}{{kl}}} \right|}} = \left| {\dfrac{l}{h}} \right|
Hence options (b) and (c) are the correct answer.

Note : Whenever we face such types of questions the key concept we have to remember is that always recall that the area of the triangle in 2-D passing from the points (x1,y1),(x2,y2) and (x3,y3)\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right){\text{ and }}\left( {{x_3},{y_3}} \right) is half times the determinant of the vertices of the triangle, i.e. \dfrac{1}{2}\left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&1 \\\ {{x_2}}&{{y_2}}&1 \\\ {{x_3}}&{{y_3}}&1 \end{array}} \right|.