Solveeit Logo

Question

Engineering Mathematics Question on Vector identities

Three vectors p,q and r\vec{p},\vec{q}\ \text{and}\ \vec{r} are given as
p=i^+j^+k^\vec{p}=\hat{i}+\hat{j}+\hat{k}
q=i^+2j^+3k^\vec{q}=\hat{i}+2\hat{j}+3\hat{k}
r=2i^+3j^+4k^\vec{r}=2\hat{i}+3\hat{j}+4\hat{k}
Which of the following is/are CORRECT ?

A

p×(q×r)+q×(r×p)+r×(p×q)=0\vec{p}×(\vec{q}×\vec{r})+\vec{q}×(\vec{r}×\vec{p})+\vec{r}×(\vec{p}×\vec{q})=\vec{0}

B

p×(q×r)=(p.r)q(p.q)r\vec{p}×(\vec{q}×\vec{r})=(\vec{p}.\vec{r})\vec{q}-(\vec{p}.\vec{q})\vec{r}

C

p×(q×r)=(p×q)×r\vec{p}×(\vec{q}×\vec{r})=(\vec{p}\times\vec{q})\times\vec{r}

D

r.(p×q)=(q×p).r\vec{r}.(\vec{p}\times\vec{q})=(\vec{q}\times\vec{p}).\vec{r}

Answer

p×(q×r)+q×(r×p)+r×(p×q)=0\vec{p}×(\vec{q}×\vec{r})+\vec{q}×(\vec{r}×\vec{p})+\vec{r}×(\vec{p}×\vec{q})=\vec{0}

Explanation

Solution

The correct option is (A) : p×(q×r)+q×(r×p)+r×(p×q)=0\vec{p}×(\vec{q}×\vec{r})+\vec{q}×(\vec{r}×\vec{p})+\vec{r}×(\vec{p}×\vec{q})=\vec{0} and (B) : p×(q×r)=(p.r)q(p.q)r\vec{p}×(\vec{q}×\vec{r})=(\vec{p}.\vec{r})\vec{q}-(\vec{p}.\vec{q})\vec{r}