Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

Three vectors satisfy the relation A.B=0\overrightarrow{A}.\overrightarrow{B}=0 and A.C=0\overrightarrow{A}.\overrightarrow{C}=0 then A\overrightarrow{A} is parallel to

A

B×C\overrightarrow{B}\times\overrightarrow{C}

B

B.C\overrightarrow{B}.\overrightarrow{C}

C

C\overrightarrow{C}

D

B\overrightarrow{B}

Answer

B×C\overrightarrow{B}\times\overrightarrow{C}

Explanation

Solution

Here A.B\overrightarrow{A} .{B} =ABcosθAB\, cos \theta = ABcos90AB\, cos 90^\circ = O \Rightarrow AB\overrightarrow{A} \perp \overrightarrow{B} Similarly, ACB\overrightarrow{A} \perp \overrightarrow{C} \Rightarrow \overrightarrow{B} and C \overrightarrow{C} are in the same plane and A \overrightarrow{A} is perpendicular to them. Thus AB×C \overrightarrow{A} || \overrightarrow{B} \times \overrightarrow{C}