Solveeit Logo

Question

Physics Question on Magnetic Field Due To A Current Element, Biot-Savart Law

Three vectors OP\overrightarrow{OP}, OQ\overrightarrow{OQ}, and OR\overrightarrow{OR} each of magnitude AA are acting as shown in figure. The resultant of the three vectors is AxA \sqrt{x}. The value of xx is ______. circle OPR

Answer

From the given diagram: Vectors OP\overrightarrow{OP}, OQ\overrightarrow{OQ}, and OR\overrightarrow{OR} form angles of 9090^\circ, 4545^\circ, and so on.
The resultant of the three vectors is:
R=OP+OQ+OR.\overrightarrow{R} = \overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR}.
The magnitude is:
R=(A+A2)2+(A+A2)2.|\overrightarrow{R}| = \sqrt{\left(A + \frac{A}{\sqrt{2}}\right)^2 + \left(A + \frac{A}{\sqrt{2}}\right)^2}.
R=(A+A2)2+(A2)2.|\overrightarrow{R}| = \sqrt{\left(A + \frac{A}{\sqrt{2}}\right)^2 + \left(\frac{A}{\sqrt{2}}\right)^2}.
Simplify:
R=A3.|\overrightarrow{R}| = A\sqrt{3}.
Thus, x=3x = 3.
Final Answer: x=3x = 3.

Explanation

Solution

From the given diagram: Vectors OP\overrightarrow{OP}, OQ\overrightarrow{OQ}, and OR\overrightarrow{OR} form angles of 9090^\circ, 4545^\circ, and so on.
The resultant of the three vectors is:
R=OP+OQ+OR.\overrightarrow{R} = \overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR}.
The magnitude is:
R=(A+A2)2+(A+A2)2.|\overrightarrow{R}| = \sqrt{\left(A + \frac{A}{\sqrt{2}}\right)^2 + \left(A + \frac{A}{\sqrt{2}}\right)^2}.
R=(A+A2)2+(A2)2.|\overrightarrow{R}| = \sqrt{\left(A + \frac{A}{\sqrt{2}}\right)^2 + \left(\frac{A}{\sqrt{2}}\right)^2}.
Simplify:
R=A3.|\overrightarrow{R}| = A\sqrt{3}.
Thus, x=3x = 3.
Final Answer: x=3x = 3.