Solveeit Logo

Question

Question: Three tangents to a parabola, which are such that the tangents of their inclinations to the axis are...

Three tangents to a parabola, which are such that the tangents of their inclinations to the axis are in a given harmonic progression, form a triangle is
(a) which is isosceles
(b) equilateral
(c) having constant area
(d) None of these

Explanation

Solution

Equations of tangents to the parabola y2=4ax{{y}^{2}}=4ax at point P(at12,2at1)P(a{{t}_{1}}^{2},2a{{t}_{1}}) , Q(at22,2at2)Q(a{{t}_{2}}^{2},2a{{t}_{2}}) and R(at32,2at3)R(a{{t}_{3}}^{2},2a{{t}_{3}}) is given by t1y=x+at12{{t}_{1}}y=x+a{{t}_{1}}^{2} , t2y=x+at22{{t}_{2}}y=x+a{{t}_{2}}^{2} and t3y=x+at32{{t}_{3}}y=x+a{{t}_{3}}^{2} having slope 1t1\dfrac{1}{{{t}_{1}}} , 1t2\dfrac{1}{{{t}_{2}}} and 1t3\dfrac{1}{{{t}_{3}}} respectively. Then t1,t2,t3{{t}_{1}},{{t}_{2}},{{t}_{3}} are in arithmetic progression (A.P) . Find the area of triangle using formula 12x1y11 x2y21 x3y31 \dfrac{1}{2}\left| \begin{matrix} {{x}_{1}} & {{y}_{1}} & 1 \\\ {{x}_{2}} & {{y}_{2}} & 1 \\\ {{x}_{3}} & {{y}_{3}} & 1 \\\ \end{matrix} \right| if (x1,y1)({{x}_{1}},{{y}_{1}}) , (x2,y2)({{x}_{2}},{{y}_{2}}) and (x3,y3)({{x}_{3}},{{y}_{3}}) be three points.

Complete step by step answer:
Let us consider a parabola y2=4ax{{y}^{2}}=4ax , then take three points on the parabola P(at12,2at1)P(a{{t}_{1}}^{2},2a{{t}_{1}}) , Q(at22,2at2)Q(a{{t}_{2}}^{2},2a{{t}_{2}}) and R(at32,2at3)R(a{{t}_{3}}^{2},2a{{t}_{3}}) . Now equations of tangents to the parabola y2=4ax{{y}^{2}}=4ax at point P,Q,RP,Q,R is given by t1y=x+at12{{t}_{1}}y=x+a{{t}_{1}}^{2} , t2y=x+at22{{t}_{2}}y=x+a{{t}_{2}}^{2} and t3y=x+at32{{t}_{3}}y=x+a{{t}_{3}}^{2} . These tangents have slope 1t1\dfrac{1}{{{t}_{1}}} , 1t2\dfrac{1}{{{t}_{2}}} and 1t3\dfrac{1}{{{t}_{3}}} respectively. It is given in the question that these slopes are in harmonic progression (H.P).
Therefore t1,t2,t3{{t}_{1}},{{t}_{2}},{{t}_{3}}are in arithmetic progression (A.P) because a series is said to be in H.P when the reciprocals of the terms form an A.P . Let dd be the common difference of given A.P t1,t2,t3{{t}_{1}},{{t}_{2}},{{t}_{3}} then,
t2t1=d{{t}_{2}}-{{t}_{1}}=d
t3t2=d{{t}_{3}}-{{t}_{2}}=d
And t3t1=2d{{t}_{3}}-{{t}_{1}}=2d
Now we will find the intersection points of tangent drawn from point QQ and RR , RR and PP , PP and RR . Let the point of intersection of tangents be A, B and C respectively. Then the coordinates of A, B and C are
A=at2t3,a(t2+t3)A=\\{a{{t}_{2}}{{t}_{3}},a({{t}_{2}}+{{t}_{3}})\\}
B=at3t1,a(t3+t1)B=\\{a{{t}_{3}}{{t}_{1}},a({{t}_{3}}+{{t}_{1}})\\}
C=at1t2,a(t1+t2)C=\\{a{{t}_{1}}{{t}_{2}},a({{t}_{1}}+{{t}_{2}})\\}
We will now find the area of triangle formed by points A, B and C. If (x1,y1)({{x}_{1}},{{y}_{1}}) , (x2,y2)({{x}_{2}},{{y}_{2}}) and (x3,y3)({{x}_{3}},{{y}_{3}}) be three points then area of triangle is given by the formula 12x1y11 x2y21 x3y31 \dfrac{1}{2}\left| \begin{matrix} {{x}_{1}} & {{y}_{1}} & 1 \\\ {{x}_{2}} & {{y}_{2}} & 1 \\\ {{x}_{3}} & {{y}_{3}} & 1 \\\ \end{matrix} \right| Using this formula for area of triangle and coordinate points of A, B and C we will find the area of triangle ABCABC we get,
Area of ABC=12at2t3a(t2+t3)1 at3t1a(t3+t1)1 at1t2a(t1+t2)1 \vartriangle ABC=\dfrac{1}{2}\left| \begin{matrix} a{{t}_{2}}{{t}_{3}} & a({{t}_{2}}+{{t}_{3}}) & 1 \\\ a{{t}_{3}}{{t}_{1}} & a({{t}_{3}}+{{t}_{1}}) & 1 \\\ a{{t}_{1}}{{t}_{2}} & a({{t}_{1}}+{{t}_{2}}) & 1 \\\ \end{matrix} \right|
Now we will find the value of determinant by using row and column transformation. For solving the determinant we will take out aa from column 1 and column 2.
=12a2t2t3(t2+t3)1 t3t1(t3+t1)1 t1t2(t1+t2)1 =\dfrac{1}{2}{{a}^{2}}\left| \begin{matrix} {{t}_{2}}{{t}_{3}} & ({{t}_{2}}+{{t}_{3}}) & 1 \\\ {{t}_{3}}{{t}_{1}} & ({{t}_{3}}+{{t}_{1}}) & 1 \\\ {{t}_{1}}{{t}_{2}} & ({{t}_{1}}+{{t}_{2}}) & 1 \\\ \end{matrix} \right|
Subtract row 2 and row 1 and substitute in row 2. Similarly subtract row 3 and row 1 and substitute in row 3 we get,
=12a2t2t3(t2+t3)1 t3(t1t2)(t1t2)0 t2(t1t3)(t1t3)0 =\dfrac{1}{2}{{a}^{2}}\left| \begin{matrix} {{t}_{2}}{{t}_{3}} & ({{t}_{2}}+{{t}_{3}}) & 1 \\\ {{t}_{3}}({{t}_{1}}-{{t}_{2}}) & ({{t}_{1}}-{{t}_{2}}) & 0 \\\ {{t}_{2}}({{t}_{1}}-{{t}_{3}}) & ({{t}_{1}}-{{t}_{3}}) & 0 \\\ \end{matrix} \right|
Taking (t1t3)({{t}_{1}}-{{t}_{3}}) and (t1t2)({{t}_{1}}-{{t}_{2}}) common from row 3 and row 2 respectively we get,
=12a2(t1t2)(t1t3)t2t3(t2+t3)1 t310 t210 =\dfrac{1}{2}{{a}^{2}}({{t}_{1}}-{{t}_{2}})({{t}_{1}}-{{t}_{3}})\left| \begin{matrix} {{t}_{2}}{{t}_{3}} & ({{t}_{2}}+{{t}_{3}}) & 1 \\\ {{t}_{3}} & 1 & 0 \\\ {{t}_{2}} & 1 & 0 \\\ \end{matrix} \right|
Now solving the determinant we get,
=12a2(t1t2)(t1t3)(t2t3)=\dfrac{1}{2}{{a}^{2}}\left| ({{t}_{1}}-{{t}_{2}})({{t}_{1}}-{{t}_{3}})({{t}_{2}}-{{t}_{3}}) \right|
Earlier we have found out the value of t2t1=d{{t}_{2}}-{{t}_{1}}=d , t3t2=d{{t}_{3}}-{{t}_{2}}=d and t3t1=2d{{t}_{3}}-{{t}_{1}}=2d . Substituting these values above we get,
=12a2(d)(d)(2d) =a2d3 \begin{aligned} & =\dfrac{1}{2}{{a}^{2}}(d)(d)(2d) \\\ & ={{a}^{2}}{{d}^{3}} \\\ \end{aligned}
Since the area of the triangle has come out to be a constant value so three tangents to a parabola, which are such that the tangents of their inclinations to the axis are in a given harmonic progression, form a triangle is having constant area. Hence, option (c) is correct.

Note:
If (x1,y1)({{x}_{1}},{{y}_{1}}) , (x2,y2)({{x}_{2}},{{y}_{2}}) and (x3,y3)({{x}_{3}},{{y}_{3}}) be three points then area of triangle is given by the formula 12x1y11 x2y21 x3y31 \dfrac{1}{2}\left| \begin{matrix} {{x}_{1}} & {{y}_{1}} & 1 \\\ {{x}_{2}} & {{y}_{2}} & 1 \\\ {{x}_{3}} & {{y}_{3}} & 1 \\\ \end{matrix} \right| Using this formula for the area of triangle and coordinate points of A, B and C we will find the area of triangle ABC . Area of the triangle is a positive quantity so care should be taken when we calculate, if the value of the determinant turns out to be negative then take the modulus value of the result.