Solveeit Logo

Question

Mathematics Question on Statistics

Three rotten apples are accidently mixed with fifteen good apples. Assuming the random variable x to be the number of rotten apples in a draw of two apples, the variance of x is

A

37153\frac{37}{153}

B

57153\frac{57}{153}

C

47153\frac{47}{153}

D

40153\frac{40}{153}

Answer

40153\frac{40}{153}

Explanation

Solution

Consider 3 bad apples and 15 good apples. Let XX be the number of bad apples drawn. The probabilities are:

P(X=0)=(152)(182)=105153P(X = 0) = \frac{\binom{15}{2}}{\binom{18}{2}} = \frac{105}{153} P(X=1)=(31)(151)(182)=45153P(X = 1) = \frac{\binom{3}{1} \cdot \binom{15}{1}}{\binom{18}{2}} = \frac{45}{153} P(X=2)=(32)(182)=3153P(X = 2) = \frac{\binom{3}{2}}{\binom{18}{2}} = \frac{3}{153}

Calculate the expected value E(X)E(X):

E(X)=0×105153+1×45153+2×3153=51153=13E(X) = 0 \times \frac{105}{153} + 1 \times \frac{45}{153} + 2 \times \frac{3}{153} = \frac{51}{153} = \frac{1}{3}

Compute the variance:

Var(X)=E(X2)(E(X))2\text{Var}(X) = E(X^2) - (E(X))^2 E(X2)=02×105153+12×45153+22×3153=57153E(X^2) = 0^2 \times \frac{105}{153} + 1^2 \times \frac{45}{153} + 2^2 \times \frac{3}{153} = \frac{57}{153} Var(X)=57153(13)2=5715319=40153\text{Var}(X) = \frac{57}{153} - \left( \frac{1}{3} \right)^2 = \frac{57}{153} - \frac{1}{9} = \frac{40}{153}