Solveeit Logo

Question

Physics Question on thermal properties of matter

Three rods made from the same material and having the same cross-sectional area, form the sides of an isosceles triangle ABCABC , right-angled at BB . The points AA and BB are maintained at temperature TT and 2T\sqrt{2}T , respectively. In steady-state, the temperature of the point CC is TCT_{C} . Assuming that only heat conduction takes place along the lengths of the rods, the value of TCT\frac{T_{C}}{T} is

A

12(21)\frac{1}{2 \left(\sqrt{2} - 1\right)}

B

32+1\frac{3}{\sqrt{2}+1}

C

13(21)\frac{1}{\sqrt{3} \left(\sqrt{2} - 1\right)}

D

12+1\frac{1}{\sqrt{2} + 1}

Answer

32+1\frac{3}{\sqrt{2}+1}

Explanation

Solution

(ΔQΔt)BC=(ΔQΔt)CA\left(\frac{\Delta \text{Q}}{\Delta \text{t}}\right)_{\text{BC}} = \left(\frac{\Delta \text{Q}}{\Delta \text{t}}\right)_{\text{CA}} ?kA(2T(T)C)a=kA((T)CT)2a? \, \frac{\text{kA} \left(\sqrt{2} \text{T} - \left(\text{T}\right)_{\text{C}}\right)}{\text{a}} = \frac{\text{kA} \left(\left(\text{T}\right)_{\text{C}} - \text{T}\right)}{\sqrt{2} \text{a}} Solve to get TCT=32+1\frac{\text{T}_{\text{C}}}{\text{T}} = \frac{3}{\sqrt{2} + 1}