Solveeit Logo

Question

Question: Three points whose position vectors are \(\mathbf{a} + \mathbf{b},\mathbf{a} - \mathbf{b}\) and \(\m...

Three points whose position vectors are a+b,ab\mathbf{a} + \mathbf{b},\mathbf{a} - \mathbf{b} and a+kb\mathbf{a} + k\mathbf{b} will be collinear, if the value of k is

A

Zero

B

Only negative real number

C

Only positive real number

D

Every real number

Answer

Every real number

Explanation

Solution

AB=λBC\overset{\rightarrow}{AB} = \lambda\overset{\rightarrow}{BC}, (for collinearity)

Here AB=2b,\overset{\rightarrow}{AB} = - 2\mathbf{b}, BC=(k+1)b\overset{\rightarrow}{BC} = (k + 1)\mathbf{b}

Hence kRAB=λBC.\forall k \in R \Rightarrow \overset{\rightarrow}{AB} = \lambda\overset{\rightarrow}{BC}.