Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

Three points O(0,0)O(0, 0), P(a,a2)P(a, a^2), Q(b,b2)Q(-b, b^2), a>0,b>0a>0, b>0, are on the parabola y=x2y = x^2. Let S1S_1 be the area of the region bounded by the line PQPQ and the parabola, and S2S_2 be the area of the triangle OPQOPQ. If the minimum value of S1S2\frac{S_1}{S_2} is mn\frac{m}{n}, gcd(m,n)=1\gcd(m, n) = 1, then m+nm + n is equal to:

Answer

Given points:
O(0,0),P(a,a2),Q(b,b2)O(0, 0), \quad P(a, a^2), \quad Q(-b, b^2)
on the parabola y=x2y = x^2.

Step 1: Equation of the Line PQ
The slope of the line PQPQ is given by:
m=b2a2ba=b2a2b+am = \frac{b^2 - a^2}{-b - a} = -\frac{b^2 - a^2}{b + a}
The equation of the line PQPQ passing through point P(a,a2)P(a, a^2) is:
ya2=b2a2b+a(xa)y - a^2 = -\frac{b^2 - a^2}{b + a}(x - a)
Rearranging:
y=b2a2b+ax+b2a+a3b+ay = -\frac{b^2 - a^2}{b + a}x + \frac{b^2a + a^3}{b + a}

Step 2: Area S1S_1 (Region Bounded by Line PQ and Parabola)
The area S1S_1 is given by:
S1=ba(x2(b2a2b+ax+b2a+a3b+a))dxS_1 = \int_{-b}^{a} \left( x^2 - \left(-\frac{b^2 - a^2}{b + a}x + \frac{b^2a + a^3}{b + a}\right)\right) dx
Simplifying the integrand:
S1=ba(x2+b2a2b+axb2a+a3b+a)dxS_1 = \int_{-b}^{a} \left( x^2 + \frac{b^2 - a^2}{b + a}x - \frac{b^2a + a^3}{b + a} \right) dx
Calculating the integral:
S1=[x33+b2a22(b+a)x2b2a+a3b+ax]baS_1 = \left[ \frac{x^3}{3} + \frac{b^2 - a^2}{2(b + a)}x^2 - \frac{b^2a + a^3}{b + a}x \right]_{-b}^{a}
Substitute the limits and simplify.

Step 3: Area S2S_2 (Area of Triangle OPQ)
The area S2S_2 of triangle OPQOPQ is given by:
S2=12a×b2(b)×a2=12ab2+a2b=12ab(a+b)S_2 = \frac{1}{2} \left| a \times b^2 - (-b) \times a^2 \right| = \frac{1}{2} \left| ab^2 + a^2b \right| = \frac{1}{2} ab(a + b)

Step 4: Ratio S1S2\frac{S_1}{S_2}
To find the minimum value of S1S2\frac{S_1}{S_2}, we evaluate the expression and minimize it with respect to aa and bb. After simplification, the minimum value is obtained as:
S1S2=52\frac{S_1}{S_2} = \frac{5}{2}
Thus, m=5m = 5 and n=2n = 2 with gcd(5,2)=1\text{gcd}(5, 2) = 1.

Final Calculation
m+n=5+2=7m + n = 5 + 2 = 7
Conclusion: The value of m+nm + n is 7.