Solveeit Logo

Question

Question: Three points are *A*(6, 3), *B*(– 3, 5), *C*(4, – 2) and *P* (*x, y*) is a point, then the ratio of ...

Three points are A(6, 3), B(– 3, 5), C(4, – 2) and P (x, y) is a point, then the ratio of area of ΔPBC\Delta PBCand ΔABC\Delta ABCis

A

x+y27\left| \frac{x + y - 2}{7} \right|

B

xy+22\left| \frac{x - y + 2}{2} \right|

C

xy27\left| \frac{x - y - 2}{7} \right|

D

None

Answer

x+y27\left| \frac{x + y - 2}{7} \right|

Explanation

Solution

Area of ΔPBCArea of ΔABC=12[3(2y)+4(y5)+x(5+2)]12[6(5+2)3(23)+4(35)]\frac{\text{Area of }\Delta PBC}{\text{Area of }\Delta ABC} = \frac{\frac{1}{2}\left\lbrack - 3( - 2 - y) + 4(y - 5) + x(5 + 2) \right\rbrack}{\frac{1}{2}\left\lbrack 6(5 + 2) - 3( - 2 - 3) + 4(3 - 5) \right\rbrack}=7x+7y1449=x+y27\left| \frac{7x + 7y - 14}{49} \right| = \left| \frac{x + y - 2}{7} \right|