Solveeit Logo

Question

Question: Three perfect gases at absolute temperature \({{\text{T}}_{1}},{{\text{T}}_{2}}\) and\({{\text{T}}_{...

Three perfect gases at absolute temperature T1,T2{{\text{T}}_{1}},{{\text{T}}_{2}} andT3{{\text{T}}_{3}} are mixed. The masses of molecules arem1,m2{{\text{m}}_{1}},{{\text{m}}_{2}} andm3{{\text{m}}_{3}} and the number of molecules aren1,n2{{\text{n}}_{1}},{{\text{n}}_{2}} andn3{{\text{n}}_{3}} respectively. Assuming no less of energy, the final temperature of the mixture is:
A.(T1+T2+T3)3\dfrac{\left( {{\text{T}}_{1}}+{{\text{T}}_{2}}+{{\text{T}}_{3}} \right)}{3}
B.n1T1+n2T2+n3T3n1+n2+n3\dfrac{{{\text{n}}_{1}}{{\text{T}}_{1}}+{{\text{n}}_{2}}{{\text{T}}_{2}}+{{\text{n}}_{3}}{{\text{T}}_{3}}}{{{\text{n}}_{1}}+{{\text{n}}_{2}}+{{\text{n}}_{3}}}
C.n1T12+n2T22+n3T32n1T1+n2T2+n3T3\dfrac{{{\text{n}}_{1}}{{\text{T}}_{1}}^{2}+{{\text{n}}_{2}}{{\text{T}}_{2}}^{2}+{{\text{n}}_{3}}{{\text{T}}_{3}}^{2}}{{{\text{n}}_{1}}{{\text{T}}_{1}}+{{\text{n}}_{2}}{{\text{T}}_{2}}+{{\text{n}}_{3}}{{\text{T}}_{3}}}
D.n12T12+n22T22+n32T32n1T1+n2T2+n3T3\dfrac{{{\text{n}}_{1}}^{2}{{\text{T}}_{1}}^{2}+{{\text{n}}_{2}}^{2}{{\text{T}}_{2}}^{2}+{{\text{n}}_{3}}^{2}{{\text{T}}_{3}}^{2}}{{{\text{n}}_{1}}{{\text{T}}_{1}}+{{\text{n}}_{2}}{{\text{T}}_{2}}+{{\text{n}}_{3}}{{\text{T}}_{3}}}

Explanation

Solution

The K.E of n molecules given byn(12 KBT)\text{n}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}\text{T} \right). The total kinetic energy to the sum of kinetic energies of individual gases from this, the required result can be obtained.

Complete answer:
For perfect gases.
Kinetic energy of n moleculesn(12 KBT)\text{n}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}\text{T} \right)
As there are three perfect gases.
So K.E=(n1+n2+n3)(12KBT)=\left( {{\text{n}}_{1}}+{{\text{n}}_{2}}+{{\text{n}}_{3}} \right)\left( \dfrac{1}{2}{{\text{K}}_{\text{B}}}\text{T} \right)
Now, total kinetic energy is equal to the sum of kinetic energies of individual gases.
So, n total K.E
=n1(K.E)1+n2(K.E)2+n3(K.E)3 (n1+n2+n3)(12 KBT)=n1(12 KBT1)+n2(12 KBT2)+n3(12 KBT3) \begin{aligned} & ={{\text{n}}_{1}}{{\left( \text{K}\text{.E} \right)}_{1}}+{{\text{n}}_{2}}{{\left( \text{K}\text{.E} \right)}_{2}}+{{\text{n}}_{3}}{{\left( \text{K}\text{.E} \right)}_{3}} \\\ & \left( {{\text{n}}_{1}}+{{\text{n}}_{2}}+{{\text{n}}_{3}} \right)\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}\text{T} \right)={{\text{n}}_{1}}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}{{\text{T}}_{1}} \right)+{{\text{n}}_{2}}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}{{\text{T}}_{2}} \right)+{{\text{n}}_{3}}\left( \dfrac{1}{2}\text{ }{{\text{K}}_{\text{B}}}{{\text{T}}_{3}} \right) \\\ \end{aligned}
Here T1,T2,T3{{\text{T}}_{1}},{{\text{T}}_{2}},{{\text{T}}_{3}} are temperatures of individual gases.
So,(n1,n2,n3)T=n1T1+n2T2+n3T3\left( {{\text{n}}_{1}},{{\text{n}}_{2}},{{\text{n}}_{3}} \right)\text{T}={{\text{n}}_{1}}{{\text{T}}_{1}}+{{\text{n}}_{2}}{{\text{T}}_{2}}+{{\text{n}}_{3}}{{\text{T}}_{3}}
Or T=n1T1+n2T2+n3T3n1+n2+n3\text{T}=\dfrac{{{\text{n}}_{1}}{{\text{T}}_{1}}+{{\text{n}}_{2}}{{\text{T}}_{2}}+{{\text{n}}_{3}}{{\text{T}}_{3}}}{{{\text{n}}_{1}}+{{\text{n}}_{2}}+{{\text{n}}_{3}}}

So, the correct option is (B).

Note:
Perfect gas is also called an ideal gas. The ideal gas law PV = nRT relies on the assumptions.
The gas consists of a large number of molecules which are in random motion.
The volume of the molecules is negligibly small compared to volume occupied by gas.
No forces act on the molecules except during elastic collisions of negligible duration.