Solveeit Logo

Question

Physics Question on Gravitation

Three particles, two with masses mm and one with mass MM , might be arranged in any of the four configurations shown below. Rank the configurations according to the magnitude of the gravitational force on MM , least to greatest

A

(i), (ii), (iii), (iv)

B

(ii), (i), (iii), (iv)

C

(ii), (i), (iv), (iii)

D

(ii), (iii), (iv), (i)

Answer

(ii), (i), (iii), (iv)

Explanation

Solution

For configuration (i), gravitational force on MM due to mm and mm

F1=GMmd2+GMm(2d)2=GMmd2[1+14]F_{1}=\frac{GMm}{d^{2}}+\frac{GMm}{\left(2d\right)^{2}}=\frac{GMm}{d^{2}}\left[1+\frac{1}{4}\right]
=GMmd254(i)=\frac{GMm}{d^{2}}\cdot\frac{5}{4}\ldots\left(i\right)
For configuration (ii)\left(ii\right), gravitational force on MM due to mm and mm

F2=GMmd2GMmd2=0(iii)F_{2}=\frac{GMm}{d^{2}}-\frac{GMm}{d^{2}}=0 \dots (iii)
For configuration (iii), gravitational force on MM

F3=(F)2+(F)2F_{3}=\sqrt{\left(F'\right)^{2}+\left(F''\right)^{2}}
((\because angle between F'and F'' is 9090^{\circ} )
=(GMmd2)2+(GMmd2)2=GMmd22(iii)=\sqrt{\left(\frac{GMm}{d^{2}}\right)^{2}+\left(\frac{GMm}{d^{2}}\right)^{2}}=\frac{GMm}{d^{2}} \sqrt{2} \cdots\left(iii\right)
For configuration (iv)\left(iv\right), gravitational force on MM , where $0 < ,\theta

Gravitational force on MM,
F4=(F)2+(F)2+2FFcosθF_{4}=\sqrt{\left(F'\right)^{2}+\left(F''\right)^{2}+2F'F'' cos\,\theta}
=(GMmd2)2+(GMmd2)2+2GMmd2GMmd2cosθ=\sqrt{\left(\frac{GMm}{d^{2}}\right)^{2}+\left(\frac{GMm}{d^{2}}\right)^{2}}+2\frac{GMm}{d^{2}}\cdot\frac{GMm}{d^{2}} cos\,\theta
=GMmd22(1+cosθ)=\frac{GMm}{d^{2}}\sqrt{2\left(1+cos\,\theta\right)}
=(GMmd22)1+cosθ(iv)=\left(\frac{GMm}{d^{2}}\sqrt{2}\right)\sqrt{1+cos\,\theta} \ldots\left(iv\right)
(\because for 0})
From Eqs. (i)\left(i\right), (ii)\left(ii\right), (iii)\left(iii\right) and (iv)\left(iv\right), we get
$F_{2}