Solveeit Logo

Question

Physics Question on Centre of mass

Three particles of masses 50g,100g50\, g, 100\, g and 150g150\, g are placed at the vertices of an equilateral triangle of side 1m1\, m (as shown in the figure). The (x,y)(x, y) coordinates of the centre of mass will be :

A

(712m,38)\bigg(\frac{7}{12} m , \frac{\sqrt{3}}{8}\bigg)

B

(34m,512)\bigg(\frac{\sqrt{3}}{4} m , \frac{\sqrt{5}}{12}\bigg)

C

(712m,34)\bigg(\frac{7}{12} m , \frac{\sqrt{3}}{4}\bigg)

D

(38m,712)\bigg(\frac{\sqrt{3}}{8} m , \frac{\sqrt{7}}{12}\bigg)

Answer

(712m,34)\bigg(\frac{7}{12} m , \frac{\sqrt{3}}{4}\bigg)

Explanation

Solution

The co-ordinates of the centre of mass rcm0+150×(12i^+32j^)+100×i^300\vec{r}_{cm} \frac{0 + 150 \times \bigg(\frac{1}{2} \hat{i} + \frac{\sqrt{3}}{2} \hat{j}\bigg) + 100 \times \hat{i}}{300} rcm=712i^+34j^\vec{r}_{cm} \, = \, \frac{7}{12} \hat{i} + \frac{\sqrt{3}}{4} \hat{j} \therefore \, Co- ordinate (712,34)m\bigg(\frac{7}{12} , \frac{\sqrt{3}}{4}\bigg)m