Solveeit Logo

Question

Physics Question on Centre of mass

Three particles of masses 1kg,32kg1\, kg, \frac{3}{2} kg, and 2kg2\,kg are located at the vertices of an equilateral triangle of side aa. The x,yx, y coordinates of the centre of mass are

A

(5a9,2a33)\left(\frac{5a}{9}, \frac{2a}{3\sqrt{3}}\right)

B

(2a33,5a9)\left(\frac{2a}{3\sqrt{3}}, \frac{5a}{9}\right)

C

(5a9,2a3)\left(\frac{5a}{9}, \frac{2a}{\sqrt{3}}\right)

D

(2a3,5a9)\left(\frac{2a}{\sqrt{3}}, \frac{5a}{9}\right)

Answer

(5a9,2a33)\left(\frac{5a}{9}, \frac{2a}{3\sqrt{3}}\right)

Explanation

Solution

A uniform sphere of mass MM and radius RR is placed on a rough horizontal surface (Figure). The sphere is struck horizontally at a height hh from the floor. Match Column II with Column IIII. Let the masses 1kg,32kg1 \,kg, \frac{3}{2}\, kg and 2kg2\,kg are located at the vertices A,BA, B and CC as shown in figure. The coordinates of points A,BA, B and CC are(0,0),(a,0), (0,0), (a, 0), a2,\frac{a}{2}, 3a2 \frac{\sqrt{3a}}{2} respectively. The coordinates of centre of mass are XCM=m1x1+m2x2+m3x3m1+m2+m3X_{CM} = \frac{m_{1}x_{1} +m_{2}x_{2} +m_{3}x_{3}}{m_{1}+m_{2}+m_{3}} =[1×0+32×a+2×a2][1+32+2]=5a9= \frac{\left[1\times0+\frac{3}{2} \times a+2 \times\frac{a}{2}\right]}{\left[1+ \frac{3}{2}+2\right]} = \frac{5a}{9} YCM=m1y1+m2y2+m3y3m1+m2+m3Y_{CM} = \frac{m_{1}y_{1} +m_{2}y_{2}+m_{3}y_{3}}{m_{1}+m_{2}+m_{3}} =[1×0+32×0+2×3a2][1+32+2]= \frac{\left[1\times 0+\frac{3}{2} \times 0+2 \times \frac{\sqrt{3}a}{2}\right]}{\left[1+ \frac{3}{2}+2\right]} =23a9= \frac{2\sqrt{3}a}{9} =2a33 = \frac{2a}{3\sqrt{3}}