Solveeit Logo

Question

Physics Question on Centre of mass

Three particles each of mass 1 kg are placed at the corners of a right angled triangle AOB, O being the origin of the coordinate system (OA and OB along positive X- direction and positive Y- direction). If OA=OB=1m, the positive vector of the centre of mass (in metres) is:

A

i^+j^3\frac{\widehat{i}+\widehat{j}}{3}

B

2(i^+j^)3\frac{2\left( \widehat{i}+\widehat{j} \right)}{3}

C

2(i^j^)3\frac{2\left( \widehat{i}-\widehat{j} \right)}{3}

D

(i^j^)\left( \widehat{i}-\widehat{j} \right)

Answer

i^+j^3\frac{\widehat{i}+\widehat{j}}{3}

Explanation

Solution

Three particles each of mass 1 kg are placed the three corners of a right angled triangle. Here, m1=m2=m3=1{{m}_{1}}={{m}_{2}}={{m}_{3}}=1 (x1,y1)=(0,0)({{x}_{1}},{{y}_{1}})=(0,0) (x3,y3)=(0,1)({{x}_{3}},{{y}_{3}})=(0,1) (xCM,yCM)=?({{x}_{CM}},{{y}_{CM}})=? xCM=m1x1+m2x2+m3x3m1+m2+m3{{x}_{CM}}=\frac{{{m}_{1}}{{x}_{1}}+{{m}_{2}}{{x}_{2}}+{{m}_{3}}{{x}_{3}}}{{{m}_{1}}+{{m}_{2}}+{{m}_{3}}} xCM=1.0+1.1+1.01+1+1{{x}_{CM}}=\frac{1.0+1.1+1.0}{1+1+1} xCM=13{{x}_{CM}}=\frac{1}{3} yCM=m1y1+m2y2+m3y3m1+m2+m3{{y}_{CM}}=\frac{{{m}_{1}}{{y}_{1}}+{{m}_{2}}{{y}_{2}}+{{m}_{3}}{{y}_{3}}}{{{m}_{1}}+{{m}_{2}}+{{m}_{3}}} yCM=1.0+1.0+1.11+1+1{{y}_{CM}}=\frac{1.0+1.0+1.1}{1+1+1} yCM=13{{y}_{CM}}=\frac{1}{3} \therefore rCM=xCMi^+yCMj^=13i^+13j^\vec{r}\,CM={{x}_{CM}}\hat{i}+{{y}_{CM}}\hat{j}=\frac{1}{3}\hat{i}+\frac{1}{3}\hat{j} rCM=i^+j^3{{\vec{r}}_{CM}}=\frac{\hat{i}+\hat{j}}{3}