Solveeit Logo

Question

Mathematics Question on Sequence and series

Three numbers x,yx, y and zz are in arithmetic progression. If x+y+z=3x + y + z = - 3 and xyz=8xyz= 8, then x2+y2+z2x^2 + y^2 + z^2 is equal to

A

9

B

10

C

21

D

20

Answer

21

Explanation

Solution

Let x=ar,y=a,z=a+rx=a-r, y=a, z=a +r
Now, we have
x+y+z=3x+y+z=-3
ar+a+a+r=3\therefore a- r+ a+ a +r=-3
3a=3\Rightarrow 3 a=-3
a=1\Rightarrow a=-1
Again, xyz=8x y z=8
(ar)(a)(a+r)=8\therefore (a-r)(a)(a +r)=8
a(a2r2)=8\Rightarrow a\left(a^{2}-r^{2}\right)=8
1(1r2)=8\Rightarrow -1\left(1-r^{2}\right)=8
1+r2=8\Rightarrow -1+r^{2}=8
r2=9\Rightarrow r^{2}=9
r=±3\Rightarrow r=\pm 3
x,y,z\therefore x, y, z are 4,1,2-4,-1,2 or 2,1,42,-1,-4
x2+y2+z2=(4)2+(1)2+(2)2\therefore x^{2}+y^{2}+z^{2}=(-4)^{2}+(-1)^{2}+(2)^{2}
=16+1+4=21=16+1+4=21
So, the correct option is (C) : 21.