Question
Mathematics Question on Sequence and series
Three numbers x,y and z are in arithmetic progression. If x+y+z=−3 and xyz=8, then x2+y2+z2 is equal to
A
9
B
10
C
21
D
20
Answer
21
Explanation
Solution
Let x=a−r,y=a,z=a+r
Now, we have
x+y+z=−3
∴a−r+a+a+r=−3
⇒3a=−3
⇒a=−1
Again, xyz=8
∴(a−r)(a)(a+r)=8
⇒a(a2−r2)=8
⇒−1(1−r2)=8
⇒−1+r2=8
⇒r2=9
⇒r=±3
∴x,y,z are −4,−1,2 or 2,−1,−4
∴x2+y2+z2=(−4)2+(−1)2+(2)2
=16+1+4=21
So, the correct option is (C) : 21.