Solveeit Logo

Question

Mathematics Question on Geometric Progression

Three non-zero real numbers form an A.PA.P. and the square of the numbers taken in the same order constitute a G.PG.P. Then the number of all possible common ratios of the G.PG.P. are

A

11

B

22

C

33

D

44

Answer

33

Explanation

Solution

Three numbers in A.PA.P. can be taken as ad,a,a+da- d, a, a + d Then (ad)2,a2,(a+d)2\left(a-d\right)^{2}, a^{2}, \left(a+d\right)^{2} are in G.PG. P. a4=(a2d2)2\Rightarrow a^{4} = \left(a^{2}-d^{2}\right)^{2} d42a2d2=0\Rightarrow d^{4} - 2a^{2}d^{2} = 0 d2(d22a2)=0 \Rightarrow d^{2} \left(d^{2}-2a^{2}\right) = 0 d=0,±2a \Rightarrow d= 0, \pm \sqrt{2a} (ad)2,a2,(a+d)2 \because \left(a-d\right)^{2}, a^{2}, \left(a+d\right)^{2} forms a G.PG.P. \therefore Common ratio (r)=(a+da)2\left(r\right) = \left(\frac{a+d}{a}\right)^{2} When d=0d=0, r=(a+da)2=1r = \left(\frac{a+d}{a}\right)^{2} = 1 When d=±2a,rd= \pm \sqrt{2a}, r =(a±2aa)2= \left(\frac{a\pm\sqrt{2a}}{a}\right)^{2} =(1±2)2= \left(1\pm \sqrt{2}\right)^{2} =3±22= 3 \pm 2\sqrt{2} Thus, there are three common ratios 1,3+22,3221, 3+2\sqrt{2} , 3- 2\sqrt{2}.