Solveeit Logo

Question

Physics Question on Surface tension

Three liquids of densities having the same value of surface tension TT, rise to the same height in three identical capillaries. The angles of contact θ1,θ2\theta_{1}, \theta_{2} and θ3\theta_{3} obey-

A

π2>θ1>θ2>θ30\frac{\pi}{2} > \theta_1 > \theta_2 > \theta_3 \geq 0

B

0θ1<θ2<θ3<π20 \leq \theta_1 < \theta_2 < \theta_3 < \frac{\pi}{2}

C

π2<θ1<θ2<θ3<π\frac{\pi}{2} < \theta_1 < \theta_2 < \theta_3 < \pi

D

π>θ1>θ2>θ3>π2\pi > \theta_1 > \theta_2 > \theta_3 > \frac{\pi}{2}

Answer

0θ1<θ2<θ3<π20 \leq \theta_1 < \theta_2 < \theta_3 < \frac{\pi}{2}

Explanation

Solution

h=2Tcosθcrρg=h = \frac{2T \cos\theta_{c}}{r \rho g} = same cosθcρ \cos \theta_{c} \propto \rho ρ1>ρ2>ρ3\rho_{1} > \rho_{2} > \rho_{3} cosθc1>cosθc2>cosθc3\cos\theta c_{1} > \cos \theta c_{2} > \cos \theta_{c_3} 0θc1<θc2<θc3<π20 \le \theta_{c_1} < \theta_{c_2} < \theta_{c_3} < \frac{\pi}{2}