Solveeit Logo

Question

Question: Three immiscible liquids of densities ![](https://cdn.pureessence.tech/canvas_30.png?top_left_x=0&to...

Three immiscible liquids of densities and refractive indies μ1>μ2>μ3\mu _ { 1 } > \mu _ { 2 } > \mu _ { 3 } are put in a beaker. The height of each liquid column is h/3.A dot is made at the bottom of the beaker. For near normal vision, find the apparent depth of the dot.:

A

h6(1μ1+1μ2+1μ3)\frac { \mathrm { h } } { 6 } \left( \frac { 1 } { \mu _ { 1 } } + \frac { 1 } { \mu _ { 2 } } + \frac { 1 } { \mu _ { 3 } } \right)

B

h6(1μ11μ21μ3)\frac { \mathrm { h } } { 6 } \left( \frac { 1 } { \mu _ { 1 } } - \frac { 1 } { \mu _ { 2 } } - \frac { 1 } { \mu _ { 3 } } \right)

C

h3(1μ11μ21μ3)\frac { \mathrm { h } } { 3 } \left( \frac { 1 } { \mu _ { 1 } } - \frac { 1 } { \mu _ { 2 } } - \frac { 1 } { \mu _ { 3 } } \right)

D

h3(1μ1+1μ2+1μ3)\frac { \mathrm { h } } { 3 } \left( \frac { 1 } { \mu _ { 1 } } + \frac { 1 } { \mu _ { 2 } } + \frac { 1 } { \mu _ { 3 } } \right)

Answer

h3(1μ1+1μ2+1μ3)\frac { \mathrm { h } } { 3 } \left( \frac { 1 } { \mu _ { 1 } } + \frac { 1 } { \mu _ { 2 } } + \frac { 1 } { \mu _ { 3 } } \right)

Explanation

Solution

: Let be apparent depth of the dot when seen from air.

μ1=h/3x1\therefore \mu _ { 1 } = \frac { \mathrm { h } / 3 } { \mathrm { x } _ { 1 } }

(Here, h/3 is real depth of the dot under liquid of density d1\mathrm { d } _ { 1 })

Similarly, apparent depths of the dot when seen from air through two other liquids are

x2=h3μ2\mathrm { x } _ { 2 } = \frac { \mathrm { h } } { 3 \mu _ { 2 } } and

\therefore Apparent depth of the dot

=13μ+13μ2+h3μ3=h3[1μ1+1μ2+1μ3]= \frac { 1 } { 3 \mu } + \frac { 1 } { 3 \mu _ { 2 } } + \frac { \mathrm { h } } { 3 \mu _ { 3 } } = \frac { \mathrm { h } } { 3 } \left[ \frac { 1 } { \mu _ { 1 } } + \frac { 1 } { \mu _ { 2 } } + \frac { 1 } { \mu _ { 3 } } \right]