Solveeit Logo

Question

Physics Question on Pressure

Three immiscible liquids of densities d1>d2>d3d_1 > d_2 > d_3 and refractive indices μ1>μ2>μ3\mu_1 > \mu_2 > \mu_3 are put in a beaker. The height of each liquid column is h/3h/3. A dot is made at the bottom of the beaker. For near normal vision, find the apparent depth of the dot.

A

h6(1μ1+1μ2+1μ3)\frac{h}{6}\left(\frac{1}{\mu_{1}} +\frac{1}{\mu_{2}}+\frac{1}{\mu_{3}}\right)

B

h6(1μ11μ21μ3)\frac{h}{6}\left(\frac{1}{\mu_{1}} -\frac{1}{\mu_{2}} - \frac{1}{\mu_{3}}\right)

C

h3(1μ11μ21μ3)\frac{h}{3}\left(\frac{1}{\mu_{1}} -\frac{1}{\mu_{2}} - \frac{1}{\mu_{3}}\right)

D

h3(1μ1+1μ2+1μ3)\frac{h}{3}\left(\frac{1}{\mu_{1}} +\frac{1}{\mu_{2}}+\frac{1}{\mu_{3}}\right)

Answer

h3(1μ1+1μ2+1μ3)\frac{h}{3}\left(\frac{1}{\mu_{1}} +\frac{1}{\mu_{2}}+\frac{1}{\mu_{3}}\right)

Explanation

Solution

Apparent depth of the dot =h3μ1+h3μ2+h3μ3= \frac{h}{3\mu_{1}}+\frac{h}{3\mu_{2}}+\frac{h}{3\mu_{3}} =h3[1μ1+1μ2+1μ3]= \frac{h}{3}\left[\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}+\frac{1}{\mu_{3}}\right]