Solveeit Logo

Question

Physics Question on Centre of mass

Three identical spheres, each of mass MM, are placed at the corners of a right angle triangle with mutually perpendicular sides equal to 2m2\,m (see figure). Taking the point of intersection of the two mutually perpendicular sides as the origin, find the position vector of centre of mass

A

2(i^+j^)2\left(\hat{i}+\hat{j}\right)

B

(i^+j^)\left(\hat{i}+\hat{j}\right)

C

23(i^+j^)\frac{2}{3}\left(\hat{i}+\hat{j}\right)

D

43(i^+j^)\frac{4}{3}\left(\hat{i}+\hat{j}\right)

Answer

23(i^+j^)\frac{2}{3}\left(\hat{i}+\hat{j}\right)

Explanation

Solution

Xcom=M×0+M×2+M×03M=23X_{\text{com}}=\frac{M\times0+M\times2+M\times0}{3M}=\frac{2}{3} ycom=M×0+M+2+M×03M=23y_{\text{com}}=\frac{M\times0+M+2+M\times0}{3M}=\frac{2}{3} Position vector =23i^+23j^=\frac{2}{3} \hat{i}+\frac{2}{3} \hat{j}