Solveeit Logo

Question

Question: Three identical point masses, each of mass 1*kg* lie in the *x*-*y* plane at points (0, 0), (0, 0.2*...

Three identical point masses, each of mass 1kg lie in the x-y plane at points (0, 0), (0, 0.2m) and (0.2m, 0). The net gravitational force on the mass at the origin is

A

1.67×109(j^+j^)N1.67 \times 10 ^ { - 9 } ( \hat { j } + \hat { j } ) N

B

3.34×1010(i^+j^)N3.34 \times 10 ^ { - 10 } ( \hat { i } + \hat { j } ) N

C

1.67×109(i^j^)N1.67 \times 10 ^ { - 9 } ( \hat { i } - \hat { j } ) N

D

3.34×1010(i^+j^)N3.34 \times 10 ^ { - 10 } ( \hat { i } + \hat { j } ) N

Answer

1.67×109(j^+j^)N1.67 \times 10 ^ { - 9 } ( \hat { j } + \hat { j } ) N

Explanation

Solution

Let particle AA lies at origin, particle xx-axis respectively

FAC=GmAmBrAB2i^\overrightarrow { F _ { A C } } = \frac { G m _ { A } m _ { B } } { r _ { A B } ^ { 2 } } \hat { i } =6.67×1011×1×1(0.2)2i^=1.67×109i^N= \frac { 6.67 \times 10 ^ { - 11 } \times 1 \times 1 } { ( 0.2 ) ^ { 2 } } \hat { i } = 1.67 \times 10 ^ { - 9 } \hat { i } N

Similarly FAB=1.67×109j^N\overrightarrow { F _ { A B } } = 1.67 \times 10 ^ { - 9 } \hat { j } N

\thereforeNet force on particle A F=FAC+FAB=1.67×109(i^+j^)N\vec { F } = \vec { F } _ { A C } + \vec { F } _ { A B } = 1.67 \times 10 ^ { - 9 } ( \hat { i } + \hat { j } ) N