Solveeit Logo

Question

Question: Three forces \(\overset{\rightarrow}{P},\overset{\rightarrow}{Q}\mspace{6mu}\overset{\rightarrow}{R}...

Three forces P,Q6muR\overset{\rightarrow}{P},\overset{\rightarrow}{Q}\mspace{6mu}\overset{\rightarrow}{R}are acting at a point in a plane. The angles between P\overset{\rightarrow}{P}and Q\overset{\rightarrow}{Q}andQ\overset{\rightarrow}{Q}andR\overset{\rightarrow}{R} are 150° and 1200 respectively, then for equilibrium, forces P, Q, R are in the ratio

A

1:2:31:2:\sqrt{3}

B

1:2:31:2:3

C

3:2:1

D

3:2:1\sqrt{3}:2:1

Answer

3:2:1\sqrt{3}:2:1

Explanation

Solution

Clearly, the angle between P and R is

360(150+120)=90360{^\circ} - (150{^\circ} + 120{^\circ}) = 90{^\circ}. By Lami's theorem,Psin120=Qsin90=Rsin150P3/2=Q1=R1/2P3=Q2=R1\frac{P}{\sin 120{^\circ}} = \frac{Q}{\sin 90{^\circ}} = \frac{R}{\sin 150{^\circ}} \Rightarrow \frac{P}{\sqrt{3}/2} = \frac{Q}{1} = \frac{R}{1/2} \Rightarrow \frac{P}{\sqrt{3}} = \frac{Q}{2} = \frac{R}{1}