Solveeit Logo

Question

Mathematics Question on Conic sections

Three distinct points A,BA, B and CC are given in the 22 - dimensional coordinate plane such that the ratio of the distance of any one of them from the point (1,0)(1, 0) to the distance from the point (1,0)( - 1, 0) is equal to 13\frac{1}{3}. Then the circumcentre of the triangle ABCABC is at the point

A

(0,0)(0, 0)

B

(54,0)\left(\frac{5}{4}, 0\right)

C

(52,0)\left(\frac{5}{2}, 0\right)

D

(53,0)\left(\frac{5}{3}, 0\right)

Answer

(54,0)\left(\frac{5}{4}, 0\right)

Explanation

Solution

P=(1,0);Q(1,0)P=\left(1, 0\right) ; Q\left(-1, 0\right) Let A=(x,y)A=\left(x, y\right) APAQ=BPBQ=CPCQ=13...(1)\frac{AP}{AQ}=\frac{BP}{BQ}=\frac{CP}{CQ}=\frac{1}{3}\,...\left(1\right) 3AP=AQ?9AP2=AQ2?9(x1)2+9y2=(x+1)2+y2\Rightarrow 3AP = AQ ? 9AP^{2} = AQ^{2} ? 9\left(x -1\right)^{2} + 9y^{2} = \left(x +1\right)^{2} + y^{2} 9x218x+9+9y2=x2+2x+1+y2?8x220x+8y2+8=0\Rightarrow 9x^{2} -18x + 9 + 9y^{2} = x^{2} + 2x + 1+ y^{2} ? 8x^{2} - 20x + 8y^{2} + 8 = 0 x2+y252x+1=0...(2)\Rightarrow x^{2}+y^{2}-\frac{5}{2}x+1=0\,...\left(2\right) \therefore A lies on the circle Similarly B, C are also lies on the same circle \therefore Circumcentre of ABC=ABC = Centre of Circle (1)=(54,0)\left(1\right)=\left(\frac{5}{4}, 0\right)