Solveeit Logo

Question

Question: Three different type of glasses are used to make a large glass slab. The thermal conductivity of gla...

Three different type of glasses are used to make a large glass slab. The thermal conductivity of glass slabs are k1k_1, k2k_2 and k3k_3. The width of each glass slab is 'ω\omega' and cross-sectional area is AA. The glass slabs are kept in a pattern as shown in the figure. The upper surface of glass slab is maintained at temperature T1T_1 and lower surface at T2T_2. It is given that k1=1.10W/mKk_1 = 1.10\,\mathrm{W/mK}, k2=2.82W/mKk_2 = 2.82\,\mathrm{W/mK}, k3=2.08W/mKk_3 = 2.08\,\mathrm{W/mK}, ω=10cm\omega = 10\mathrm{\,cm}, A=1.3m2A = 1.3\,\mathrm{m^2}, T1=100CT_1 = 100^\circ\mathrm{C}, T2=0CT_2 = 0^\circ\mathrm{C}. Find equivalent thermal conductivity of large glass slab in W/mK.

Answer
keq=31k1+1k2+1k3=311.10+12.82+12.081.72 W/mKk_{\text{eq}} = \frac{3}{\frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3}} = \frac{3}{\frac{1}{1.10} + \frac{1}{2.82} + \frac{1}{2.08}} \approx 1.72\ \mathrm{W/mK}
Explanation

Solution

Step‑1: Identify series combination
All three slabs have the same thickness ω\omega and are stacked one above the other, so they conduct heat in series.

Step‑2: Thermal resistance of each slab

Ri=ωkiARtotal=i=13Ri=ωA(1k1+1k2+1k3)R_i = \frac{\omega}{k_i A} \quad\Longrightarrow\quad R_{\text{total}} = \sum_{i=1}^3 R_i = \frac{\omega}{A}\Bigl(\frac1{k_1} + \frac1{k_2} + \frac1{k_3}\Bigr)

Step‑3: Equivalent conductivity definition
For an equivalent slab of total thickness 3ω3\omega:

Rtotal=3ωkeqAR_{\text{total}} = \frac{3\omega}{k_{\text{eq}}\,A}

Equate resistances:

3ωkeqA=ωA(1k1+1k2+1k3)    keq=31k1+1k2+1k3\frac{3\omega}{k_{\text{eq}}\,A} = \frac{\omega}{A}\Bigl(\frac1{k_1} + \frac1{k_2} + \frac1{k_3}\Bigr) \;\Longrightarrow\; k_{\text{eq}} = \frac{3}{\frac1{k_1} + \frac1{k_2} + \frac1{k_3}}

Step‑4: Numerical substitution

keq=311.10+12.82+12.081.72 W/mKk_{\text{eq}} = \frac{3}{\frac{1}{1.10} + \frac{1}{2.82} + \frac{1}{2.08}} \approx 1.72\ \mathrm{W/mK}