Solveeit Logo

Question

Question: Three critics review a book. Odds in favour of the book are 5 : 2, 4 : 3 and 3 : 4 respectively for...

Three critics review a book. Odds in favour of the book are

5 : 2, 4 : 3 and 3 : 4 respectively for the three critics. The

probability that majority are in favour of the book is

A

3549\frac { 35 } { 49 }

B

125343\frac { 125 } { 343 }

C

164343\frac { 164 } { 343 }

D

209343\frac { 209 } { 343 }

Answer

209343\frac { 209 } { 343 }

Explanation

Solution

Probability that the first critic favours the book, P(E1)

= 55+2=57\frac { 5 } { 5 + 2 } = \frac { 5 } { 7 }

Probability that the second critic favours the book, P(E2)

= 44+3=47\frac { 4 } { 4 + 3 } = \frac { 4 } { 7 }

Probability that the third critic favours the book, P(E3)

= 33+4=37\frac { 3 } { 3 + 4 } = \frac { 3 } { 7 }

Majority will be in favour if at least two critics favour the book

= P(E1 Ē E2 Ē E3\overline { \mathrm { E } } _ { 3 } ) + P(E1 Ē E2\overline { \mathrm { E } } _ { 2 } Ē E3) + P

( E1\overline { \mathrm { E } } _ { 1 } Ē E2 Ē E3) + P(E1 Ē E2 Ē E3)

= P(E1) P(E2) P( E3\overline { \mathrm { E } } _ { 3 } ) + P(E1) P( E2\overline { \mathrm { E } } _ { 2 } ) P(E3) +

P( E1\overline { \mathrm { E } } _ { 1 } Ē E2 Ē E3) + P(E1) P(E2) P(E3)

= 57×47×(137)+57×(147)×37+(157)×\frac { 5 } { 7 } \times \frac { 4 } { 7 } \times \left( 1 - \frac { 3 } { 7 } \right) + \frac { 5 } { 7 } \times \left( 1 - \frac { 4 } { 7 } \right) \times \frac { 3 } { 7 } + \left( 1 - \frac { 5 } { 7 } \right) \times 47×37+57×47×37=209343\frac { 4 } { 7 } \times \frac { 3 } { 7 } + \frac { 5 } { 7 } \times \frac { 4 } { 7 } \times \frac { 3 } { 7 } = \frac { 209 } { 343 }