Question
Question: Three concurrent edges OA, OB, OC of a parallelopiped are represented by three vectors \(2\mathbf{i}...
Three concurrent edges OA, OB, OC of a parallelopiped are represented by three vectors 2i+j−k,i+2j+3k and −3i−j+k, the volume of the solid so formed in cubic unit is
A
5
B
6
C
7
D
8
Answer
5
Explanation
Solution
Vol. of parallelopiped $= \left| \begin{matrix} \mathbf{a}{1} & \mathbf{b}{1} & \mathbf{c}{1} \ \mathbf{a}{2} & \mathbf{b}{2} & \mathbf{c}{2} \ \mathbf{a}{3} & \mathbf{b}{3} & \mathbf{c}_{3} \end{matrix} \right| = \left| \begin{matrix} 2 & 1 & - 1 \ 1 & 2 & 3 \
- 3 & - 1 & 1 \end{matrix} \right|$
=2(5)−1(1+9)−1(5)=∣−5∣=5 cubic unit.