Solveeit Logo

Question

Question: Three concurrent edges OA, OB, OC of a parallelopiped are represented by three vectors \(2\mathbf{i}...

Three concurrent edges OA, OB, OC of a parallelopiped are represented by three vectors 2i+jk,i+2j+3k2\mathbf{i} + \mathbf{j} - \mathbf{k},\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} and 3ij+k,- 3\mathbf{i} - \mathbf{j} + \mathbf{k}, the volume of the solid so formed in cubic unit is

A

5

B

6

C

7

D

8

Answer

5

Explanation

Solution

Vol. of parallelopiped $= \left| \begin{matrix} \mathbf{a}{1} & \mathbf{b}{1} & \mathbf{c}{1} \ \mathbf{a}{2} & \mathbf{b}{2} & \mathbf{c}{2} \ \mathbf{a}{3} & \mathbf{b}{3} & \mathbf{c}_{3} \end{matrix} \right| = \left| \begin{matrix} 2 & 1 & - 1 \ 1 & 2 & 3 \

  • 3 & - 1 & 1 \end{matrix} \right|$

=2(5)1(1+9)1(5)=5=5= 2(5) - 1(1 + 9) - 1(5) = | - 5| = 5 cubic unit.