Solveeit Logo

Question

Physics Question on potential energy

Three concentric spherical shells have radii a, b and c (a < b < c) and have surface charge densities σ\sigma, σ-\sigma and σ\sigma respectively. If VA,VBV_A, \, V_B and VC V_C denote the potentials of the three shells, then, for c = a + b , we have

A

VC=VBVAV_C = V_B \ne V_A

B

VCVBVA V_C \ne V_B \ne V_A

C

VC=VB=VA V_C = V_B = V_A

D

VC=VAVB V_C = V_A \ne V_B

Answer

VC=VAVB V_C = V_A \ne V_B

Explanation

Solution

qA=4πa2σq _{ A } =4 \pi a ^{2} \sigma qB=4πb2σq _{ B } =-4 \pi b ^{2} \sigma qC=4πc2σ,c=a+bq _{ C }=4 \pi c ^{2} \sigma,\, c = a + b VA=14π0(qAa+qBb+qCc)V _{ A } =\frac{1}{4 \pi \in_{0}}\left(\frac{ q _{ A }}{ a }+\frac{ q _{ B }}{ b }+\frac{ q _{ C }}{ c }\right) =2σaϵ0=\frac{2 \sigma a }{\epsilon_{0}} VB=14π0(qAa+qBb+qCc)V _{ B } =\frac{1}{4 \pi \in_{0}}\left(\frac{ q _{ A }}{ a }+\frac{ q _{ B }}{ b }+\frac{ q _{ C }}{ c }\right) =σϵ0(a2bb+c)=\frac{\sigma}{\epsilon_{0}}\left(\frac{ a ^{2}}{ b }- b + c \right) =σϵ0(a+a2b)=\frac{\sigma}{\epsilon_{0}}\left( a +\frac{ a ^{2}}{ b }\right) VC=14π0(qAa+qBb+qCc)V _{ C } =\frac{1}{4 \pi \in_{0}}\left(\frac{ q _{ A }}{ a }+\frac{ q _{ B }}{ b }+\frac{ q _{ C }}{ c }\right) =σϵ0(a2bc+c)=2σaϵ0=\frac{\sigma}{\epsilon_{0}}\left(\frac{ a ^{2}- b }{ c }+ c \right)=\frac{2 \sigma a }{\epsilon_{0}} So, VC=VAVBV _{ C }= V _{ A } \neq V _{ B }