Question
Question: Three concentric spherical shells have radii \(a,\,b\) and \(c\) \((a(A). \){{V}_{C}}={{V}_{B}}={{V}...
Three concentric spherical shells have radii a,b and c (a(A).{{V}{C}}={{V}{B}}={{V}{A}}(B).{{V}{C}}={{V}{B}}\ne {{V}{A}}(C).{{V}{C}}\ne {{V}{B}}={{V}{A}}(D).{{V}{C}}\ne {{V}{B}}\ne {{V}{A}}$
Solution
The potential due to a spherical shell is the work done to move a charge from one point to the other. It depends on the charge permittivity of medium and distance from the centre. The potential on each sphere will be due to their own potential and the potential of other spheres also.
Formula used:
E=4πε0r2q
σ=4πr2q
Complete answer:
The electric field is defined as the work done to bring a unit charge from infinity to a point in the field. Its SI unit is Vm.
The electric field due to a spherical shell is given by-
E=4πε0r2q - (1)
Here, E is the electric field
q is the charge on the spherical shell
ε0 is the permittivity of free space
r is the distance from the centre of the shell
Given three concentric spheres having radii a, b, c such that (aChargedensityisthechargeperunitarea.Thereforeforasphericalshell,\sigma =\dfrac{q}{4\pi {{r}^{2}}}\Rightarrow q=\sigma 4\pi {{r}^{2}}−(2)Therefore,theelectricfieldisindependentoftheradius.Theelectricpotentialisdefinedastheworkdonetomoveachargebetweentwopointsinanelectricfield.Foraconductingshellthepotentialisgivenby−V=\dfrac{q}{4\pi {{\varepsilon }{0}}r}Forthesphericalshellofradiusa,thepotentialwillbe−\begin{aligned}
& {{V}{a}}=\dfrac{q}{4\pi {{\varepsilon }{0}}a}+\dfrac{q}{4\pi {{\varepsilon }{0}}b}+\dfrac{q}{4\pi {{\varepsilon }{0}}c} \\
& \Rightarrow {{V}{a}}=\dfrac{1}{4\pi {{\varepsilon }{0}}}\left( \dfrac{q}{a}+\dfrac{q'}{b}+\dfrac{q''}{c} \right) \\
\end{aligned}Substitutingchargeintermsofchargedensityfromeq(2),weget,\begin{aligned}
& {{V}{a}}=\dfrac{1}{4\pi {{\varepsilon }{0}}}\left( \dfrac{\sigma 4\pi {{a}^{2}}}{a}+\dfrac{-\sigma 4\pi {{b}^{2}}}{b}+\dfrac{\sigma 4\pi {{c}^{2}}}{c} \right) \\
& \Rightarrow {{V}{a}}=\dfrac{\sigma }{{{\varepsilon }{0}}}\left( a-b+c \right) \\
\end{aligned}Forsphericalshellforradiusbandchargedensity-\sigma ,thepotentialwillbe\begin{aligned}
& {{V}{b}}=\dfrac{q}{4\pi {{\varepsilon }{0}}b}+\dfrac{q}{4\pi {{\varepsilon }{0}}b}+\dfrac{q}{4\pi {{\varepsilon }{0}}c} \\
& \Rightarrow {{V}{b}}=\dfrac{1}{4\pi {{\varepsilon }{0}}}\left( \dfrac{q}{b}+\dfrac{q'}{b}+\dfrac{q''}{c} \right) \\
\end{aligned}Substitutingchargeintermsofchargedensity,weget,\begin{aligned}
& {{V}{b}}=\dfrac{1}{4\pi {{\varepsilon }{0}}}\left( \dfrac{\sigma 4\pi {{a}^{2}}}{b}+\dfrac{-\sigma 4\pi {{b}^{2}}}{b}+\dfrac{\sigma 4\pi {{c}^{2}}}{c} \right) \\
& \Rightarrow {{V}{b}}=\dfrac{\sigma }{{{\varepsilon }{0}}}\left( \dfrac{{{a}^{2}}}{b}-b+c \right) \\
\end{aligned}Forsphericalshellwithradiuscandchargedensity+\sigma is−\begin{aligned}
& {{V}{c}}=\dfrac{q}{4\pi {{\varepsilon }{0}}c}+\dfrac{q}{4\pi {{\varepsilon }{0}}c}+\dfrac{q}{4\pi {{\varepsilon }{0}}c} \\
& \Rightarrow {{V}{c}}=\dfrac{1}{4\pi {{\varepsilon }{0}}}\left( \dfrac{q}{c}+\dfrac{q'}{c}+\dfrac{q''}{c} \right) \\
\end{aligned}Substitutingchargeintermsofchargedensity,weget,\begin{aligned}
& {{V}{c}}=\dfrac{1}{4\pi {{\varepsilon }{0}}}\left( \dfrac{\sigma 4\pi {{a}^{2}}}{c}+\dfrac{-\sigma 4\pi {{b}^{2}}}{c}+\dfrac{\sigma 4\pi {{c}^{2}}}{c} \right) \\
& \Rightarrow {{V}{c}}=\dfrac{\sigma }{{{\varepsilon }{0}}}\left( \dfrac{{{a}^{2}}}{c}-\dfrac{{{b}^{2}}}{c}+c \right) \\
\end{aligned}Therefore,thepotentialofthesphericalshellofradiusais\dfrac{\sigma }{{{\varepsilon }{0}}}\left( a-b+c \right),thepotentialofsphericalshellofradiusbis\dfrac{\sigma }{{{\varepsilon }{0}}}\left( \dfrac{{{a}^{2}}}{b}-b+c \right)andthepotentialofshellwithradiuscis\dfrac{\sigma }{{{\varepsilon }{0}}}\left( \dfrac{{{a}^{2}}}{c}-\dfrac{{{b}^{2}}}{c}+c \right)$, none of the potentials are equal.
Hence, the correct option is (D).
Note:
There is no charge inside a conductor; all the charge is concentrated on the surface. The potential inside the sphere is constant and is equal to the potential on the surface. Charge density can also be expressed as linear charge density and volume charge density.