Solveeit Logo

Question

Question: Three concentric spherical metallic shells A, B and C of radii a, b and c (a \< b \< c) have surface...

Three concentric spherical metallic shells A, B and C of radii a, b and c (a < b < c) have surface charge densities s, – s and s respectively. If the shells A and C are at same potential, then the correct relation between a, b and c is –

A

a + c = b

B

b + c = a

C

a – b = c

D

a + b = c

Answer

a + b = c

Explanation

Solution

Potential of shell A is,

VA = (4πa2σa4π b2σ b+4πc2σc)\left( \frac { 4 \pi \mathrm { a } ^ { 2 } \sigma } { \mathrm { a } } \frac { - 4 \pi \mathrm {~b} ^ { 2 } \sigma } { \mathrm {~b} } \frac { + 4 \pi \mathrm { c } ^ { 2 } \sigma } { \mathrm { c } } \right)

= σϵ0\frac { \sigma } { \epsilon _ { 0 } } (a – b + c)

Potential of shell C is,

VC = (4πa2σc4π b2σc+4πc2σc)\left( \frac { 4 \pi \mathrm { a } ^ { 2 } \sigma } { \mathrm { c } } \frac { - 4 \pi \mathrm {~b} ^ { 2 } \sigma } { \mathrm { c } } \frac { + 4 \pi \mathrm { c } ^ { 2 } \sigma } { \mathrm { c } } \right)

= σϵ0\frac { \sigma } { \epsilon _ { 0 } }

As VA = VC

\ σϵ0\frac { \sigma } { \epsilon _ { 0 } } (a – b + c) = σϵ0\frac { \sigma } { \epsilon _ { 0 } }

or a – b = or a + b = c