Solveeit Logo

Question

Physics Question on Electric charges and fields

Three concentric metallic spherical shells of radii R,2RR, 2R and 3R3R are given charges Q1,Q2,Q3Q_1, Q_2, Q_3 respectively. It is found that the surface charge densities on the outer surface of the shells are equal. Then the ratio of the charges given to the shells Q1:Q2:Q3Q_1 : Q_2 : Q_3 is

A

1:08:18

B

1:04:09

C

1:02:03

D

1:03:05

Answer

1:03:05

Explanation

Solution

Since surface charge densities on the outer surface of shells are same.


σ=Q3+Q2+Q14π(3R)2=Q2+Q14π(2R)2=Q14πR2\therefore \:\:\sigma = \frac{Q_{3}+Q_{2}+Q_{1}}{4\pi\left(3R\right)^{2}} = \frac{Q_{2}+Q_{1}}{4\pi\left(2R\right)^{2}}=\frac{Q_{1}}{4\pi R^{2}}
or Q3+Q2+Q19=Q2+Q14\frac{Q_{3} +Q_{2}+Q_{1}}{9}=\frac{Q_{2}+Q1}{4} ....(i)
Q2+Q14=Q11\frac{Q_{2}+Q_{1}}{4} =\frac{Q_{1}}{1} ..(ii)
Q1+Q2=4Q1Q_{1} +Q_{2} =4Q_{1} or Q2=3Q1 Q_{2} =3 Q_{1} ....(iii)
Also Q3+Q2+Q19=Q11\frac{Q_{3}+Q_{2}+Q_{1}}{9} =\frac{Q_{1}}{1}
Q3+4Q1=9Q1Q_{3} +4Q_{1} =9Q_{1} or Q3=5Q1Q_{3} = 5Q_{1} ...(iv)
Q1:Q2:Q3=1:3:5\therefore \:\:\:\:\:Q_{1} : Q_{2} : Q_{3} = 1 : 3 : 5